亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modification and regulation of electrode/electrolyte interface for high specific energy and long life lithium ion batteries

电解质 电极 锂(药物) 离子 接口(物质) 材料科学 光电子学 工程物理 化学 物理 复合材料 生物 内分泌学 毛细管作用 有机化学 物理化学 毛细管数
作者
Xuerui Yang,Ningbo Xu,Gaopan Liu,Yue Zou,Zhongru Zhang,Jianming Zheng,Yong Yang
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:66 (10): 1170-1186 被引量:4
标识
DOI:10.1360/tb-2020-1326
摘要

In recent years, with the rapid developments of high-technology industries such as information technology and electric vehicles, there are urgent need to develop new generations of lithium-ion batteries with higher energy density, longer cycle life and improved safety. In addition to the development of high specific energy cathode and high specific capacity anode materials, regulating the stability of the electrode/electrolyte interface is critical to achieve and balance various performances of the batteries and finally realize their commercial application widely. However, the traditional carbonate electrolytes not only suffer from severe oxidation decomposition when the charging voltage is higher than 4.3 V (vs. Li/Li+), but also show poor compatibility with high-capacity silicon or silicon-carbon (Si-C) composite anodes and lithium metal anodes. Moreover, the traditional carbonate electrolytes are flammable, which is still a big safety concern to address for lithium ion battery. Therefore, rational design of electrolytes that match the high voltage cathode, high specific capacity Si-C abode or lithium metal anode, and has better safety property and especially under harsh conditions, has become a decisive factor for the rapid developments of high specific energy lithium-ion batteries. The present work reviews different kinds of liquid electrolytes with functional additives and utilization of solid state electrolytes which are explored by our group in the past 15 years. The design strategies and systematic investigations of the electrolytes recipes include: (1) Developing anti-oxidation solvent systems, for example, applications of new high-voltage nitriles or fluorinated solvents for high-voltage cathodes, such as suberonitrile (SUN), fluoroethylene carbonate (FEC) and ethyl-(2,2,2-trifluoroethyl) carbonate (ETFEC); (2) exploiting some novel multifunctional solvents or additives which contain flame retardant groups or can be used as film-forming agents for high-voltage cathodes. For example, some P-containing compounds such as N,N-diallyl-diethoxy phosphoramide (DADEPA), phenoxy cyclophosphazene (PFPN), and ionic liquid such as N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI), etc. In addition, we have also investigated a series of solid electrolytes such as Garnet-type electrolytes, gel polymer or composite polymer electrolyte with inorganic additives, which could greatly reduce the safety risk of batteries. These works include measurements of the activation energy and ion transport mechanism of oxide solid electrolyte with solid NMR techniques, interface modification of sulfide-type solid state battery with ionic liquids, and interface passivation mechanism of PEO-based polymer electrolyte, etc. Finally, some discussions and future perspectives in developing high-voltage and highly-safe liquid electrolyte and flexible solid-state electrolytes for all solid state batteries are presented. Although the commonly used high-voltage electrolytes are mainly composed of lithium salts, anti-oxidation solvents and functional additives such as nitriles, sulfones, fluoro-ethers or fluoro-carbonates, However, the acting mechanisms of those high-voltage electrolytes, especially solvents, salts and additives, are still not clear, especially the composition, structure and evolution of the electrochemical interfaces are lack of quantitative understanding. Therefore, combining theoretical calculation and advanced in-/ex-situ interface characterization techniques, fully understanding the working mechanism of the additives in high-voltage systems and the effective components of interface film, and designing novel functional electrolyte additives are crucial for the development of a new generation of high-specific energy lithium batteries. In addition, applications of flame-retardant solvents or additives to develop flame-retardant liquid-type electrolytes and developing new solid state electrolytes are both important strategies to reduce the potential safety hazards of lithium ion batteries. The future research should focus on how to improve the compatibility between flame-retardant solvents/additives and the cathode/anode interfaces in liquid electrolytes, minimize the negative impact on battery performance (cycle performance, rate performance, etc.), enhance the ionic conductivity and mechanical flexibilities of the solid electrolytes, optimize the electrolyte phase structure/mechanical properties, and regulate the stability of interfaces to ensure the long-term cycling stability of lithium metal anodes and metal oxide cathodes.


科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助小陈加油呀采纳,获得10
4秒前
科研通AI5应助AIR采纳,获得10
8秒前
姜浩嘉完成签到,获得积分10
9秒前
CipherSage应助ytx采纳,获得10
11秒前
Lamis完成签到 ,获得积分10
13秒前
枝头树上的布谷鸟完成签到 ,获得积分10
16秒前
18秒前
22秒前
义气幼珊完成签到 ,获得积分10
23秒前
23秒前
23秒前
26秒前
舒心豪英完成签到 ,获得积分10
27秒前
外向的鸭子完成签到,获得积分10
27秒前
ytx发布了新的文献求助10
27秒前
邹咕噜发布了新的文献求助10
30秒前
情怀应助小陈加油呀采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
32秒前
jyy应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
32秒前
Hello应助科研通管家采纳,获得10
32秒前
pocky发布了新的文献求助10
32秒前
Cope完成签到 ,获得积分10
34秒前
36秒前
AIR发布了新的文献求助10
37秒前
归尘发布了新的文献求助10
42秒前
西柚发布了新的文献求助10
44秒前
103921wjk完成签到,获得积分10
1分钟前
南枳完成签到,获得积分10
1分钟前
南枳发布了新的文献求助10
1分钟前
刻苦的长颈鹿完成签到,获得积分10
1分钟前
咕哒发布了新的文献求助10
1分钟前
1234567xjy发布了新的文献求助10
1分钟前
英俊的铭应助小豆子采纳,获得10
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491299
求助须知:如何正确求助?哪些是违规求助? 3077894
关于积分的说明 9151068
捐赠科研通 2770431
什么是DOI,文献DOI怎么找? 1520437
邀请新用户注册赠送积分活动 704572
科研通“疑难数据库(出版商)”最低求助积分说明 702262