分岔图
非线性系统
分叉
混乱的
计算机科学
系列(地层学)
动力系统理论
感知器
算法
时间序列
人工智能
数学
人工神经网络
应用数学
机器学习
古生物学
物理
生物
量子力学
作者
Salama Hassona,Wiesław Marszałek,Jan Sadecki
标识
DOI:10.1016/j.asoc.2021.107874
摘要
This paper proposes new methods of computing 2D bifurcation diagrams for nonlinear time series using MultiLayer Perceptrons (MLPs), LSTM Fully Convolutional Networks (LSTM-FCN), Time Series Forests (TSFs) with entropy, Gini impurity, and K-Nearest Neighbors (KNNs) algorithm with Dynamic Time Warping (DTW). The proposed algorithms can precisely compute 2D bifurcation diagrams for oscillatory time-series (periodic or chaotic) obtained either as solutions of nonlinear systems of ordinary differential equations (ODEs) or measured and recorded when a mathematical model is not known. Illustrative computational examples include chaotic electric arc RLC circuits. The obtained results confirm usefulness of the proposed methods in a creation of 2D bifurcation diagrams — color images representing dynamics of nonlinear processes, circuits or systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI