苏贝林
通气组织
非生物成分
生物
非生物胁迫
植物
可塑性
根系
侧根
木质素
生态学
拟南芥
材料科学
基因
突变体
生物化学
复合材料
作者
Rumyana Karlova,D.R. Boer,Scott Hayes,Christa Testerink
出处
期刊:Plant Physiology
[Oxford University Press]
日期:2021-08-30
卷期号:187 (3): 1057-1070
被引量:179
标识
DOI:10.1093/plphys/kiab392
摘要
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI