Enhanced Sparse Regularization Based on Logarithm Penalty and Its Application to Gearbox Compound Fault Diagnosis

对数 正规化(语言学) 稀疏矩阵 计算机科学 算法 故障检测与隔离 数学优化 数学 人工智能 物理 量子力学 数学分析 高斯分布 执行机构
作者
Yi Liao,Weiguo Huang,Changqing Shen,Zhongkui Zhu,Jianping Xuan,Ling-Feng Mao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:4
标识
DOI:10.1109/tim.2021.3108220
摘要

A vibration signal observed from a gearbox is normally composed of the vibrations of bearing and gear components as well as the strong background noise. Sparse regularization performs as an effective method to deal with vibration signal denoising and compound fault diagnosis for the gearbox. In this article, a multivariate and non-convex logarithm penalty based on the generalized infimal convolution smoothing (GICS) is deduced. To guarantee the global minimum of the overall cost function, we also derive a convexity condition to prescribe the non-convex penalty. In this way, the optimal sparse solution to the cost function can be calculated by a convex algorithm. Multiplied by respective transform matrices, all fault components in a compound signal can be simultaneously reconstructed, and then each fault characteristic frequency can be extracted. Numerical and experimental analyses demonstrate the effectiveness of the proposed method. Compared with the classical convex $L1$ norm and newly developed non-convex generalized minimax-concave (GMC) penalties, the proposed method is superior in terms of inducing sparsity effectively and enhancing the estimation accuracy of signal components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
劲秉应助椎名hirofumi采纳,获得10
2秒前
吃生肉的孙尚香完成签到,获得积分10
4秒前
666完成签到,获得积分10
5秒前
可爱的函函应助Research采纳,获得10
6秒前
慎ming发布了新的文献求助10
6秒前
Un3erwood完成签到,获得积分10
7秒前
11秒前
lb完成签到,获得积分10
13秒前
缺文献完成签到,获得积分10
14秒前
小二郎应助云鲲采纳,获得10
15秒前
anyunyi发布了新的文献求助10
15秒前
16秒前
Tracy麦子发布了新的文献求助10
16秒前
17秒前
Lucas应助boymin2015采纳,获得10
18秒前
科研通AI2S应助小白采纳,获得10
19秒前
Chuan发布了新的文献求助10
20秒前
骆十八完成签到,获得积分10
22秒前
复杂访冬发布了新的文献求助10
22秒前
23秒前
烤鱼片完成签到,获得积分10
24秒前
25秒前
26秒前
27秒前
Yuan应助聚乙二醇采纳,获得10
27秒前
刘总完成签到,获得积分10
28秒前
28秒前
Kyogoku发布了新的文献求助30
30秒前
zzzzz发布了新的文献求助10
31秒前
31秒前
32秒前
boymin2015发布了新的文献求助10
33秒前
anyunyi发布了新的文献求助10
33秒前
jpc发布了新的文献求助20
36秒前
球球发布了新的文献求助10
37秒前
小芙爱雪碧完成签到 ,获得积分10
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465532
求助须知:如何正确求助?哪些是违规求助? 3058673
关于积分的说明 9062588
捐赠科研通 2749045
什么是DOI,文献DOI怎么找? 1508272
科研通“疑难数据库(出版商)”最低求助积分说明 696885
邀请新用户注册赠送积分活动 696535