亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vehicle Delay Estimation at Signalized Intersections Using Machine Learning Algorithms

交叉口(航空) 计算机科学 支持向量机 估计 启发式 梯度升压 随机森林 机器学习 算法 人工智能 工程类 运输工程 系统工程
作者
Muhammed Emin Cihangir Bağdatlı,Ahmet Şakir Dokuz
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (9): 110-126 被引量:24
标识
DOI:10.1177/03611981211036874
摘要

Accurate determination of average vehicle delays is significant for effective management of a signalized intersection. The vehicle delays can be determined by field studies, however, this approach is costly and time consuming. Analytical methods which are commonly utilized to estimate delay cannot generate accurate estimates, especially in oversaturated traffic flow conditions. Delay estimation models based on artificial intelligence have been presented in the literature in recent years to estimate the delay more accurately. However, the number of artificial/heuristic intelligence techniques utilized for vehicle delay estimation is limited in the literature. In this study, estimation models are developed using four different machine learning methods—support vector regression (SVR), random forest (RF), k nearest neighbor (kNN), and extreme gradient boosting (XGBoost)—that have not previously been applied in the literature for vehicle delay estimation at signalized intersections. The models were tested with data collected from 12 signalized intersections located in Ankara, the capital of Turkey, and the performance of the models was revealed. The models were furthermore compared with successful delay models from the literature. The developed models, in particular the RF and XGBoost models, showed high performance in estimating the delay at signalized intersections under different traffic conditions. The results indicate that the delay estimation models based on the RF and XGBoost techniques can significantly contribute to both the literature and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
cqbrain123完成签到,获得积分10
8秒前
科研通AI2S应助cccccc采纳,获得10
8秒前
甄雨琦发布了新的文献求助10
9秒前
oleskarabach发布了新的文献求助10
16秒前
潇洒的月光关注了科研通微信公众号
17秒前
ccc完成签到 ,获得积分10
21秒前
阿瓜师傅完成签到,获得积分10
25秒前
甄雨琦完成签到,获得积分20
28秒前
Joyo应助阿瓜师傅采纳,获得10
36秒前
37秒前
气945发布了新的文献求助10
39秒前
41秒前
赘婿应助伯赏傲柏采纳,获得10
44秒前
44秒前
48秒前
51秒前
身法马可波罗完成签到 ,获得积分10
54秒前
容容容发布了新的文献求助10
55秒前
1分钟前
zznzn完成签到,获得积分10
1分钟前
容容容完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
知了又完成签到,获得积分20
1分钟前
Msc关注了科研通微信公众号
1分钟前
1分钟前
知了又发布了新的文献求助20
1分钟前
yu完成签到 ,获得积分10
1分钟前
wykion完成签到,获得积分0
1分钟前
坚定汝燕发布了新的文献求助10
1分钟前
昏睡的冰双完成签到,获得积分10
1分钟前
Lusteri完成签到 ,获得积分10
1分钟前
oleskarabach完成签到,获得积分20
1分钟前
1分钟前
陶醉元冬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376343
求助须知:如何正确求助?哪些是违规求助? 4501460
关于积分的说明 14013061
捐赠科研通 4409230
什么是DOI,文献DOI怎么找? 2422111
邀请新用户注册赠送积分活动 1414926
关于科研通互助平台的介绍 1391787