Vehicle Delay Estimation at Signalized Intersections Using Machine Learning Algorithms

交叉口(航空) 计算机科学 支持向量机 估计 启发式 梯度升压 随机森林 机器学习 算法 人工智能 工程类 运输工程 系统工程
作者
Muhammed Emin Cihangir Bağdatlı,Ahmet Şakir Dokuz
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2675 (9): 110-126 被引量:24
标识
DOI:10.1177/03611981211036874
摘要

Accurate determination of average vehicle delays is significant for effective management of a signalized intersection. The vehicle delays can be determined by field studies, however, this approach is costly and time consuming. Analytical methods which are commonly utilized to estimate delay cannot generate accurate estimates, especially in oversaturated traffic flow conditions. Delay estimation models based on artificial intelligence have been presented in the literature in recent years to estimate the delay more accurately. However, the number of artificial/heuristic intelligence techniques utilized for vehicle delay estimation is limited in the literature. In this study, estimation models are developed using four different machine learning methods—support vector regression (SVR), random forest (RF), k nearest neighbor (kNN), and extreme gradient boosting (XGBoost)—that have not previously been applied in the literature for vehicle delay estimation at signalized intersections. The models were tested with data collected from 12 signalized intersections located in Ankara, the capital of Turkey, and the performance of the models was revealed. The models were furthermore compared with successful delay models from the literature. The developed models, in particular the RF and XGBoost models, showed high performance in estimating the delay at signalized intersections under different traffic conditions. The results indicate that the delay estimation models based on the RF and XGBoost techniques can significantly contribute to both the literature and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
123完成签到 ,获得积分10
4秒前
qiuiqiu1111完成签到,获得积分10
4秒前
丘比特应助笑点低诗桃采纳,获得10
5秒前
佳佳应助Leeny采纳,获得10
5秒前
5秒前
西瓜二郎发布了新的文献求助10
5秒前
MingQue完成签到,获得积分10
5秒前
5秒前
林非鹿完成签到 ,获得积分10
7秒前
沉默诗兰发布了新的文献求助10
8秒前
8秒前
星辰大海应助lalaland采纳,获得10
8秒前
小陈发布了新的文献求助10
11秒前
冰柠檬发布了新的文献求助10
11秒前
SciGPT应助小玉采纳,获得10
12秒前
学习发布了新的文献求助10
12秒前
苏诗兰完成签到,获得积分10
12秒前
Shanglinqin完成签到,获得积分10
15秒前
Sun完成签到,获得积分10
15秒前
15秒前
田様应助夏天的蜜雪冰城采纳,获得10
16秒前
超体完成签到 ,获得积分10
16秒前
16秒前
一只完成签到,获得积分10
16秒前
SciGPT应助超靓诺言采纳,获得10
17秒前
17秒前
17秒前
小陈完成签到,获得积分10
18秒前
18秒前
18秒前
小水发布了新的文献求助10
19秒前
一天100篇发布了新的文献求助10
20秒前
lalaland完成签到,获得积分10
21秒前
zianlai完成签到,获得积分10
22秒前
阳光姒发布了新的文献求助30
22秒前
Bryan应助科研鸟采纳,获得10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432