Vehicle Delay Estimation at Signalized Intersections Using Machine Learning Algorithms

交叉口(航空) 计算机科学 支持向量机 估计 启发式 梯度升压 随机森林 机器学习 算法 人工智能 工程类 运输工程 系统工程
作者
Muhammed Emin Cihangir Bağdatlı,Ahmet Şakir Dokuz
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (9): 110-126 被引量:20
标识
DOI:10.1177/03611981211036874
摘要

Accurate determination of average vehicle delays is significant for effective management of a signalized intersection. The vehicle delays can be determined by field studies, however, this approach is costly and time consuming. Analytical methods which are commonly utilized to estimate delay cannot generate accurate estimates, especially in oversaturated traffic flow conditions. Delay estimation models based on artificial intelligence have been presented in the literature in recent years to estimate the delay more accurately. However, the number of artificial/heuristic intelligence techniques utilized for vehicle delay estimation is limited in the literature. In this study, estimation models are developed using four different machine learning methods—support vector regression (SVR), random forest (RF), k nearest neighbor (kNN), and extreme gradient boosting (XGBoost)—that have not previously been applied in the literature for vehicle delay estimation at signalized intersections. The models were tested with data collected from 12 signalized intersections located in Ankara, the capital of Turkey, and the performance of the models was revealed. The models were furthermore compared with successful delay models from the literature. The developed models, in particular the RF and XGBoost models, showed high performance in estimating the delay at signalized intersections under different traffic conditions. The results indicate that the delay estimation models based on the RF and XGBoost techniques can significantly contribute to both the literature and practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Y_关注了科研通微信公众号
1秒前
细腻问柳发布了新的文献求助10
1秒前
生活的狗完成签到,获得积分10
1秒前
1秒前
Nancy发布了新的文献求助10
1秒前
果果发布了新的文献求助10
1秒前
2秒前
豆豆小baby完成签到,获得积分10
2秒前
思源应助小张采纳,获得10
3秒前
漂亮的芷巧完成签到,获得积分10
3秒前
whyzz完成签到,获得积分10
3秒前
Volume发布了新的文献求助10
3秒前
aa完成签到,获得积分10
4秒前
5秒前
123完成签到 ,获得积分10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
852应助阔达的太阳采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小老板的手抓饼完成签到,获得积分10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得30
6秒前
浅尝离白应助科研通管家采纳,获得10
6秒前
6秒前
高高雪枫完成签到,获得积分10
6秒前
CodeCraft应助222采纳,获得10
7秒前
菜鸟发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
棕榈发布了新的文献求助10
9秒前
9秒前
万能图书馆应助高高雪枫采纳,获得30
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148527
求助须知:如何正确求助?哪些是违规求助? 2799622
关于积分的说明 7836197
捐赠科研通 2457012
什么是DOI,文献DOI怎么找? 1307684
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601655