Vehicle Delay Estimation at Signalized Intersections Using Machine Learning Algorithms

交叉口(航空) 计算机科学 支持向量机 估计 启发式 梯度升压 随机森林 机器学习 算法 人工智能 工程类 运输工程 系统工程
作者
Muhammed Emin Cihangir Bağdatlı,Ahmet Şakir Dokuz
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (9): 110-126 被引量:20
标识
DOI:10.1177/03611981211036874
摘要

Accurate determination of average vehicle delays is significant for effective management of a signalized intersection. The vehicle delays can be determined by field studies, however, this approach is costly and time consuming. Analytical methods which are commonly utilized to estimate delay cannot generate accurate estimates, especially in oversaturated traffic flow conditions. Delay estimation models based on artificial intelligence have been presented in the literature in recent years to estimate the delay more accurately. However, the number of artificial/heuristic intelligence techniques utilized for vehicle delay estimation is limited in the literature. In this study, estimation models are developed using four different machine learning methods—support vector regression (SVR), random forest (RF), k nearest neighbor (kNN), and extreme gradient boosting (XGBoost)—that have not previously been applied in the literature for vehicle delay estimation at signalized intersections. The models were tested with data collected from 12 signalized intersections located in Ankara, the capital of Turkey, and the performance of the models was revealed. The models were furthermore compared with successful delay models from the literature. The developed models, in particular the RF and XGBoost models, showed high performance in estimating the delay at signalized intersections under different traffic conditions. The results indicate that the delay estimation models based on the RF and XGBoost techniques can significantly contribute to both the literature and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqfxc发布了新的文献求助10
1秒前
1秒前
SYLH应助FartKing采纳,获得10
1秒前
该睡觉啦发布了新的文献求助20
2秒前
陈梦雨完成签到 ,获得积分10
3秒前
gg完成签到,获得积分10
3秒前
瞬间完成签到 ,获得积分10
3秒前
Hello paper完成签到,获得积分10
4秒前
4秒前
demonox完成签到,获得积分10
4秒前
乐乐应助奔奔采纳,获得10
5秒前
7秒前
7秒前
科研通AI5应助SCI采纳,获得10
7秒前
科研通AI5应助hobowei采纳,获得10
10秒前
可爱奇异果完成签到 ,获得积分10
10秒前
wang发布了新的文献求助10
11秒前
太空人完成签到,获得积分10
11秒前
123发布了新的文献求助10
12秒前
13秒前
该睡觉啦完成签到,获得积分20
13秒前
13秒前
莫x莫完成签到 ,获得积分10
15秒前
loewy完成签到,获得积分10
15秒前
黄婷发布了新的文献求助10
15秒前
15秒前
yuan完成签到,获得积分10
15秒前
zho发布了新的文献求助10
15秒前
15秒前
苏苏完成签到,获得积分10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得80
16秒前
Hello应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
万能图书馆应助内向秋寒采纳,获得10
16秒前
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794