Vehicle Delay Estimation at Signalized Intersections Using Machine Learning Algorithms

交叉口(航空) 计算机科学 支持向量机 估计 启发式 梯度升压 随机森林 机器学习 算法 人工智能 工程类 运输工程 系统工程
作者
Muhammed Emin Cihangir Bağdatlı,Ahmet Şakir Dokuz
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (9): 110-126 被引量:24
标识
DOI:10.1177/03611981211036874
摘要

Accurate determination of average vehicle delays is significant for effective management of a signalized intersection. The vehicle delays can be determined by field studies, however, this approach is costly and time consuming. Analytical methods which are commonly utilized to estimate delay cannot generate accurate estimates, especially in oversaturated traffic flow conditions. Delay estimation models based on artificial intelligence have been presented in the literature in recent years to estimate the delay more accurately. However, the number of artificial/heuristic intelligence techniques utilized for vehicle delay estimation is limited in the literature. In this study, estimation models are developed using four different machine learning methods—support vector regression (SVR), random forest (RF), k nearest neighbor (kNN), and extreme gradient boosting (XGBoost)—that have not previously been applied in the literature for vehicle delay estimation at signalized intersections. The models were tested with data collected from 12 signalized intersections located in Ankara, the capital of Turkey, and the performance of the models was revealed. The models were furthermore compared with successful delay models from the literature. The developed models, in particular the RF and XGBoost models, showed high performance in estimating the delay at signalized intersections under different traffic conditions. The results indicate that the delay estimation models based on the RF and XGBoost techniques can significantly contribute to both the literature and practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月月应助DDDD采纳,获得10
刚刚
科研通AI6应助zhouyms采纳,获得10
刚刚
执着书南完成签到 ,获得积分10
1秒前
1秒前
ZFLCZ关注了科研通微信公众号
1秒前
彭于晏应助不吃青菜采纳,获得10
1秒前
2秒前
3秒前
Jasper应助芽芽乐采纳,获得10
4秒前
4秒前
5秒前
搜集达人应助江伊采纳,获得10
6秒前
baihehuakai发布了新的文献求助10
6秒前
顾矜应助星球日记采纳,获得10
6秒前
田様应助隐形的星月采纳,获得10
6秒前
科研通AI6应助ab采纳,获得10
7秒前
自觉馒头发布了新的文献求助10
8秒前
8秒前
动听的老鼠完成签到,获得积分10
9秒前
wsmmmmm发布了新的文献求助10
9秒前
even发布了新的文献求助10
9秒前
桐桐应助桂电马旺采纳,获得10
10秒前
10秒前
范诚完成签到,获得积分10
10秒前
10秒前
芝士雪豹发布了新的文献求助10
11秒前
QIAN完成签到,获得积分20
11秒前
11秒前
11秒前
LC发布了新的文献求助10
12秒前
13秒前
13秒前
XI完成签到 ,获得积分10
14秒前
14秒前
14秒前
悦耳笑晴发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588315
求助须知:如何正确求助?哪些是违规求助? 4671384
关于积分的说明 14787042
捐赠科研通 4624969
什么是DOI,文献DOI怎么找? 2531757
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468276