Pharmaceutical pollutant as sacrificial agent for sustainable synergistic water treatment and hydrogen production via novel Z- scheme Bi7O9I3/B4C heterojunction photocatalysts

光催化 异质结 制氢 材料科学 带隙 光化学 化学工程 量子效率 催化作用 罗丹明B 分解水 光电子学 化学 有机化学 工程类
作者
Anamika Rana,Amit Kumar,Gaurav Sharma,Mu. Naushad,Chinna Bathula,Florian J. Stadler
出处
期刊:Journal of Molecular Liquids [Elsevier BV]
卷期号:343: 117652-117652 被引量:35
标识
DOI:10.1016/j.molliq.2021.117652
摘要

The dual-function photocatalytic systems with a promising capability for hydrogen evolution and simultaneous pollutant degradation are surely a significant step towards waste-to-energy conversion goals. However, the performance of such photocatalysts is often limited by poor visible-light activity, charge separation and surface reverse reaction involving photogenerated electrons and radicals/intermediates. In this work, we report hydrothermal synthesis of novel Bi7O9I3/B4C (BIBC) heterojunction photocatalyst for advanced Norfloxacin antibiotic degradation with simultaneous hydrogen evolution under visible light. In particular, BIBC-30 heterojunction shows H2 evolution rate of 812 μmol g−1h−1 with simultaneous 94.2% NFN removal which are much higher than bare B4C (∼6 times) and Bi7O9I3 (∼4 times). Under oxic/aerobic conditions too, a high 456.3 μmol g−1h−1H2 evolution with nearly complete norfloxacin degradation was achieved. The low band gap of Bi7O9I3 and presence of metallic Bio extends the absorbance to NIR region and B4C enlarges the surface area of junction along with suppression of the back reaction. It was observed that BIBC heterojunction exhibits manifolds H2 evolution rate with NFN as sacrificial agent (18.3% apparent quantum efficiency) is manifolds higher than pure water, methanol, triethanolamine and rhodamine B. An effective Z-scheme charge transfer facilitated by Bio is active in the intimately coupled heterojunction with suitably placed energy bands. This work shows that waste to energy conversion can be promisingly achieved by performing H2 evolution and pollutant removal simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
astiria发布了新的文献求助10
刚刚
刚刚
1秒前
浮游应助优雅映阳采纳,获得10
1秒前
Jimmy完成签到,获得积分10
1秒前
小李发布了新的文献求助10
1秒前
1秒前
眼中星光发布了新的文献求助10
2秒前
2秒前
3秒前
强仔完成签到,获得积分10
3秒前
DDDD发布了新的文献求助10
4秒前
4秒前
喜欢慧慧宝完成签到,获得积分10
4秒前
4秒前
Famiglistmo完成签到,获得积分10
5秒前
5秒前
王吉吉发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
现代访梦完成签到 ,获得积分10
6秒前
AHSA156386发布了新的文献求助10
7秒前
Stephen完成签到,获得积分10
7秒前
研友_LavApn发布了新的文献求助10
8秒前
双硫仑完成签到,获得积分10
8秒前
8秒前
astiria完成签到,获得积分10
8秒前
小李完成签到,获得积分20
9秒前
9秒前
乐乐应助周宁安采纳,获得10
9秒前
9秒前
10秒前
香蕉觅云应助jun1357采纳,获得10
10秒前
my发布了新的文献求助10
10秒前
落寞的路灯应助姜露萍采纳,获得10
10秒前
11秒前
QY完成签到,获得积分10
11秒前
Shi完成签到,获得积分10
12秒前
月白发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181196
求助须知:如何正确求助?哪些是违规求助? 4368303
关于积分的说明 13602302
捐赠科研通 4219276
什么是DOI,文献DOI怎么找? 2314014
邀请新用户注册赠送积分活动 1312748
关于科研通互助平台的介绍 1261388