A Multi-Image Encryption Based on Sinusoidal Coding Frequency Multiplexing and Deep Learning

加密 计算机科学 像素 明文 人工智能 计算机视觉 多路复用 算法 计算机网络 电信
作者
Qi Li,Xiangfeng Meng,Yongkai Yin,Huazheng Wu
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:21 (18): 6178-6178 被引量:9
标识
DOI:10.3390/s21186178
摘要

Multi-image encryption technology is a vital branch of optical encryption technology. The traditional encryption method can only encrypt a small number of images, which greatly restricts its application in practice. In this paper, a new multi-image encryption method based on sinusoidal stripe coding frequency multiplexing and deep learning is proposed to realize the encryption of a greater number of images. In the process of encryption, several images are grouped, and each image in each group is first encoded with a random matrix and then modulated with a specific sinusoidal stripe; therefore, the dominant frequency of each group of images can be separated in the Fourier frequency domain. Each group is superimposed and scrambled to generate the final ciphertext. In the process of decryption, deep learning is used to improve the quality of decrypted image and the decryption speed. Specifically, the obtained ciphertext can be sent into the trained neural network and then the plaintext image can be reconstructed directly. Experimental analysis shows that when 32 images are encrypted, the CC of the decrypted result can reach more than 0.99. The efficiency of the proposed encryption method is proved in terms of histogram analysis, adjacent pixels correlation analysis, anti-noise attack analysis and resistance to occlusion attacks analysis. The encryption method has the advantages of large amount of information, good robustness and fast decryption speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的绫完成签到 ,获得积分10
1秒前
勤奋的便当完成签到,获得积分20
1秒前
1秒前
1秒前
klz发布了新的文献求助10
1秒前
机灵的囧完成签到,获得积分10
2秒前
木子李完成签到,获得积分10
2秒前
2秒前
2秒前
何大青发布了新的文献求助20
3秒前
jkdzp完成签到,获得积分20
3秒前
zz完成签到,获得积分10
3秒前
bliss完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
LRH完成签到,获得积分10
5秒前
cnbhhhhh完成签到,获得积分10
6秒前
6秒前
小懒虫完成签到,获得积分20
6秒前
6秒前
7秒前
沉默思山完成签到,获得积分10
7秒前
Deeki发布了新的文献求助10
7秒前
7秒前
搜集达人应助Tom采纳,获得10
8秒前
咸鱼发布了新的文献求助10
9秒前
SYLH应助刺猬采纳,获得10
9秒前
1234完成签到,获得积分20
9秒前
有思想发布了新的文献求助10
9秒前
TuTuesday发布了新的文献求助10
9秒前
愉快浩宇完成签到,获得积分10
9秒前
知许解夏应助呆萌朝雪采纳,获得10
11秒前
望北楼主发布了新的文献求助10
11秒前
11秒前
小雨点发布了新的文献求助10
11秒前
阳光的安南完成签到,获得积分10
11秒前
12秒前
JamesPei应助孤独梦安采纳,获得10
12秒前
小白完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255