压缩性
消散
数学
分解
相(物质)
柯西分布
初值问题
可压缩流
柯西问题
流量(数学)
物理
订单(交换)
数学分析
应用数学
数学物理
纯数学
热力学
量子力学
几何学
化学
财务
经济
有机化学
作者
Zhen Cheng,Wenjun Wang
出处
期刊:Communications on Pure and Applied Analysis
[American Institute of Mathematical Sciences]
日期:2021-01-01
摘要
<p style='text-indent:20px;'>In this paper, we consider the global existence of the Cauchy problem for a version of one velocity Baer-Nunziato model with dissipation for the mixture of two compressible fluids in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^3 $\end{document}</tex-math></inline-formula>. We get the existence theory of global strong solutions by using the decaying properties of the solutions. The energy method combined with the low-high-frequency decomposition is used to derive such properties and hence the global existence. As a byproduct, the optimal time decay estimates of all-order spatial derivatives of the pressure and the velocity are obtained.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI