A generic EEG artifact removal algorithm based on the multi-channel Wiener filter

工件(错误) 计算机科学 脑电图 维纳滤波器 算法 滤波器(信号处理) 转化(遗传学) 人工智能 模式识别(心理学) 频道(广播) 计算机视觉 生物化学 基因 精神科 化学 计算机网络 心理学
作者
Ben Somers,Tom Francart,Alexander Bertrand
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (3): 036007-036007 被引量:231
标识
DOI:10.1088/1741-2552/aaac92
摘要

Objective: The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts.Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components.Furthermore, some algorithms perform well for specific artifacts, but not for others.In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm.Approach: We propose an algorithm based on the multichannel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition.The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal.Main results: The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods.Significance: Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too "blind".This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
阿灿完成签到,获得积分10
1秒前
1秒前
禾下乘凉完成签到,获得积分10
2秒前
辛坦夫完成签到,获得积分10
4秒前
5秒前
咕嘟咕嘟发布了新的文献求助10
5秒前
林夏发布了新的文献求助10
6秒前
小鲨发布了新的文献求助10
6秒前
lihjlhigoiupi完成签到,获得积分10
6秒前
桐桐应助紫苏采纳,获得30
6秒前
7秒前
Lyu发布了新的文献求助10
7秒前
qly应助AltairKing采纳,获得10
7秒前
斑马爸爸发布了新的文献求助10
8秒前
调研昵称发布了新的文献求助10
9秒前
黄柠檬发布了新的文献求助10
9秒前
11秒前
11秒前
JIMMY发布了新的文献求助10
12秒前
熹微完成签到,获得积分10
12秒前
13秒前
轻松傲薇完成签到,获得积分10
14秒前
14秒前
14秒前
云舒完成签到,获得积分10
15秒前
15秒前
舍夫沙万完成签到,获得积分10
16秒前
wangyr11发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
18秒前
小马甲应助远了个方采纳,获得10
20秒前
斯文败类应助远了个方采纳,获得10
20秒前
思源应助远了个方采纳,获得10
20秒前
深情安青应助远了个方采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
EPR Spectroscopy: Fundamentals and Methods 500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444265
求助须知:如何正确求助?哪些是违规求助? 3040376
关于积分的说明 8980892
捐赠科研通 2728958
什么是DOI,文献DOI怎么找? 1496770
科研通“疑难数据库(出版商)”最低求助积分说明 691880
邀请新用户注册赠送积分活动 689396