已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Radiomics Signature in Preoperative Predicting Degree of Tumor Differentiation in Patients with Non–small Cell Lung Cancer

无线电技术 接收机工作特性 医学 肺癌 成像生物标志物 特征选择 签名(拓扑) 逻辑回归 放射科 肿瘤科 内科学 人工智能 计算机科学 磁共振成像 数学 几何学
作者
Xin Chen,Mengjie Fang,Di Dong,Xinhua Wei,Lingling Liu,Xiangdong Xu,Xinqing Jiang,Jie Tian,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:25 (12): 1548-1555 被引量:27
标识
DOI:10.1016/j.acra.2018.02.019
摘要

Rationale and Objectives Poorly differentiated non–small cell lung cancer (NSCLC) indicated a poor prognosis and well-differentiated NSCLC indicates a noninvasive nature and good prognosis. The purpose of this study was to build and validate a radiomics signature to predict the degree of tumor differentiation (DTD) for patients with NSCLC. Materials and Methods A total of 487 patients with pathologically diagnosed NSCLC were retrospectively included in our study. Five hundred ninety-one radiomics features were extracted from each tumor from the contrast-enhanced computed tomography images. A minimum redundancy maximum relevance algorithm and a logistic regression model were used for dimension reduction, feature selection, and radiomics signature building. The performance of the radiomics signature was assessed using receiver operating characteristic analysis, and the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy were calculated to quantify the association between a signature and DTD. An independent validation set contained 184 consecutive patients with NSCLC. Results A nine-radiomics-feature-based signature was built and it could differentiate low and high DTDs in the training set (AUC = 0.763, sensitivity = 0.750, specificity = 0.665, and accuracy = 0.687), and the radiomics signature had good discrimination performance in the validation set (AUC = 0.782, sensitivity = 0.608, specificity = 0.752, and accuracy = 0.712). Conclusions A radiomics signature based on contrast-enhanced computed tomography imaging is a potentially useful imaging biomarker for differentiating low from high DTD in patients with NSCLC. Poorly differentiated non–small cell lung cancer (NSCLC) indicated a poor prognosis and well-differentiated NSCLC indicates a noninvasive nature and good prognosis. The purpose of this study was to build and validate a radiomics signature to predict the degree of tumor differentiation (DTD) for patients with NSCLC. A total of 487 patients with pathologically diagnosed NSCLC were retrospectively included in our study. Five hundred ninety-one radiomics features were extracted from each tumor from the contrast-enhanced computed tomography images. A minimum redundancy maximum relevance algorithm and a logistic regression model were used for dimension reduction, feature selection, and radiomics signature building. The performance of the radiomics signature was assessed using receiver operating characteristic analysis, and the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy were calculated to quantify the association between a signature and DTD. An independent validation set contained 184 consecutive patients with NSCLC. A nine-radiomics-feature-based signature was built and it could differentiate low and high DTDs in the training set (AUC = 0.763, sensitivity = 0.750, specificity = 0.665, and accuracy = 0.687), and the radiomics signature had good discrimination performance in the validation set (AUC = 0.782, sensitivity = 0.608, specificity = 0.752, and accuracy = 0.712). A radiomics signature based on contrast-enhanced computed tomography imaging is a potentially useful imaging biomarker for differentiating low from high DTD in patients with NSCLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鱼辣椒发布了新的文献求助10
2秒前
刚子完成签到 ,获得积分0
2秒前
奶昔发布了新的文献求助10
4秒前
等待寄云完成签到 ,获得积分10
5秒前
paradox完成签到 ,获得积分10
6秒前
斯文败类应助于冰清采纳,获得10
7秒前
李爱国应助鲨鱼辣椒采纳,获得10
7秒前
真实的语堂完成签到,获得积分10
8秒前
10秒前
复杂妙海完成签到,获得积分10
11秒前
丰富芙完成签到,获得积分20
11秒前
乐乐应助丰富芙采纳,获得10
15秒前
zzyuyu完成签到 ,获得积分10
15秒前
卡耐基发布了新的文献求助10
16秒前
19秒前
田様应助寰2023采纳,获得10
19秒前
鲨鱼辣椒完成签到,获得积分10
21秒前
仲夏夜之梦完成签到,获得积分10
21秒前
科目三应助laolaolao采纳,获得20
23秒前
KinoFreeze完成签到 ,获得积分10
27秒前
hazekurt完成签到,获得积分10
29秒前
29秒前
斯文败类应助hazekurt采纳,获得10
34秒前
闫恒完成签到,获得积分10
34秒前
李健应助坎德拉采纳,获得10
35秒前
RC发布了新的文献求助10
35秒前
研友_5Y9775完成签到,获得积分10
39秒前
39秒前
41秒前
42秒前
丰富芙发布了新的文献求助10
46秒前
Perry完成签到,获得积分0
47秒前
何何完成签到 ,获得积分10
48秒前
英勇的爆米花完成签到,获得积分10
51秒前
58秒前
wanci应助hvu采纳,获得30
58秒前
所有灰色都被掩埋完成签到,获得积分20
58秒前
冷静的豪完成签到 ,获得积分10
59秒前
1分钟前
于冰清完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674672
关于积分的说明 14795002
捐赠科研通 4630943
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576