A Radiomics Signature in Preoperative Predicting Degree of Tumor Differentiation in Patients with Non–small Cell Lung Cancer

无线电技术 接收机工作特性 医学 肺癌 成像生物标志物 特征选择 签名(拓扑) 逻辑回归 放射科 肿瘤科 内科学 人工智能 计算机科学 磁共振成像 数学 几何学
作者
Xin Chen,Mengjie Fang,Di Dong,Xinhua Wei,Lingling Liu,Xiangdong Xu,Xinqing Jiang,Jie Tian,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:25 (12): 1548-1555 被引量:27
标识
DOI:10.1016/j.acra.2018.02.019
摘要

Rationale and Objectives Poorly differentiated non–small cell lung cancer (NSCLC) indicated a poor prognosis and well-differentiated NSCLC indicates a noninvasive nature and good prognosis. The purpose of this study was to build and validate a radiomics signature to predict the degree of tumor differentiation (DTD) for patients with NSCLC. Materials and Methods A total of 487 patients with pathologically diagnosed NSCLC were retrospectively included in our study. Five hundred ninety-one radiomics features were extracted from each tumor from the contrast-enhanced computed tomography images. A minimum redundancy maximum relevance algorithm and a logistic regression model were used for dimension reduction, feature selection, and radiomics signature building. The performance of the radiomics signature was assessed using receiver operating characteristic analysis, and the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy were calculated to quantify the association between a signature and DTD. An independent validation set contained 184 consecutive patients with NSCLC. Results A nine-radiomics-feature-based signature was built and it could differentiate low and high DTDs in the training set (AUC = 0.763, sensitivity = 0.750, specificity = 0.665, and accuracy = 0.687), and the radiomics signature had good discrimination performance in the validation set (AUC = 0.782, sensitivity = 0.608, specificity = 0.752, and accuracy = 0.712). Conclusions A radiomics signature based on contrast-enhanced computed tomography imaging is a potentially useful imaging biomarker for differentiating low from high DTD in patients with NSCLC. Poorly differentiated non–small cell lung cancer (NSCLC) indicated a poor prognosis and well-differentiated NSCLC indicates a noninvasive nature and good prognosis. The purpose of this study was to build and validate a radiomics signature to predict the degree of tumor differentiation (DTD) for patients with NSCLC. A total of 487 patients with pathologically diagnosed NSCLC were retrospectively included in our study. Five hundred ninety-one radiomics features were extracted from each tumor from the contrast-enhanced computed tomography images. A minimum redundancy maximum relevance algorithm and a logistic regression model were used for dimension reduction, feature selection, and radiomics signature building. The performance of the radiomics signature was assessed using receiver operating characteristic analysis, and the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy were calculated to quantify the association between a signature and DTD. An independent validation set contained 184 consecutive patients with NSCLC. A nine-radiomics-feature-based signature was built and it could differentiate low and high DTDs in the training set (AUC = 0.763, sensitivity = 0.750, specificity = 0.665, and accuracy = 0.687), and the radiomics signature had good discrimination performance in the validation set (AUC = 0.782, sensitivity = 0.608, specificity = 0.752, and accuracy = 0.712). A radiomics signature based on contrast-enhanced computed tomography imaging is a potentially useful imaging biomarker for differentiating low from high DTD in patients with NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
1秒前
Laity完成签到,获得积分10
1秒前
2秒前
2秒前
偌佟发布了新的文献求助10
3秒前
ZaZa完成签到,获得积分10
4秒前
李雯娴发布了新的文献求助10
5秒前
yy完成签到,获得积分10
5秒前
LY0430发布了新的文献求助10
6秒前
6秒前
7秒前
咩咩完成签到 ,获得积分10
8秒前
爆米花应助竹马子采纳,获得10
9秒前
任性的卿完成签到,获得积分10
10秒前
阿北发布了新的文献求助10
11秒前
xix发布了新的文献求助10
11秒前
王迪完成签到,获得积分10
12秒前
zhangj696完成签到,获得积分10
13秒前
娜娜完成签到 ,获得积分10
13秒前
川桜完成签到,获得积分10
14秒前
正直冰露完成签到 ,获得积分10
14秒前
干净柏柳完成签到 ,获得积分10
15秒前
十七完成签到 ,获得积分10
15秒前
李雯娴完成签到,获得积分10
17秒前
舒服的远望完成签到,获得积分10
18秒前
搜集达人应助阿北采纳,获得10
19秒前
19秒前
hjhhjh完成签到,获得积分10
20秒前
等待谷南完成签到,获得积分10
21秒前
puritan完成签到 ,获得积分10
21秒前
21秒前
jenniferli发布了新的文献求助10
22秒前
kchen85发布了新的文献求助10
24秒前
24秒前
Hunter完成签到,获得积分10
24秒前
大气的尔蓝完成签到,获得积分10
26秒前
我是老大应助腼腆的安露采纳,获得10
27秒前
coolru发布了新的文献求助10
27秒前
竹马子发布了新的文献求助10
28秒前
猩猩完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294333
求助须知:如何正确求助?哪些是违规求助? 4444199
关于积分的说明 13832392
捐赠科研通 4328271
什么是DOI,文献DOI怎么找? 2376032
邀请新用户注册赠送积分活动 1371362
关于科研通互助平台的介绍 1336532