Evolutionary Fuzzy Rule-Based Methods for Monotonic Classification

单调函数 模糊规则 计算机科学 模糊逻辑 数学 模糊集 人工智能 模式识别(心理学) 数学分析
作者
Salvador García,Rafael Alcalá,Sergio González,Yusuke Nojima
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 1376-1390 被引量:29
标识
DOI:10.1109/tfuzz.2017.2718491
摘要

In data science applications, it is very often to require predictive models satisfying monotonicity with respect to the explanatory variables involved in the dataset. In ordinal classification or regression, this occurs when the output variable or class label do not decrease when input variables increase, or vice versa. This problem is commonly known as monotonic classification, and most existing classification techniques are not able to manage this kind of constraints or they require first to monotonize the data. In the literature, the monotonicity has been considered in linguistic fuzzy models, fuzzy-inference methods, and fuzzy rule-based control systems. However, to the best of our knowledge, there is no fuzzy rule-based system designed to produce monotonic fuzzy rule-based models for classification problems. In this paper, we propose to incorporate some mechanisms based on monotonicity indexes for addressing such problems in two popular and competitive evolutionary fuzzy systems algorithms for classification and regression tasks: FARC-HD and FSmogfs $^e$ + Tun $^e$ . In addition, the proposals are able to handle any kind of classification dataset without the necessity of preprocessing. The quality of our approaches is analyzed using statistical analysis and comparing with well-known monotonic classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坐看云起发布了新的文献求助10
刚刚
烟花应助嘻嘻嘻采纳,获得10
1秒前
tuanheqi应助laohu采纳,获得30
2秒前
3秒前
失眠的诗蕊应助samuealndjw采纳,获得200
3秒前
5秒前
scvrl完成签到,获得积分10
8秒前
功不唐捐发布了新的文献求助10
8秒前
苏苏苏关注了科研通微信公众号
9秒前
10秒前
隐形曼青应助YXH采纳,获得10
11秒前
嘻嘻嘻完成签到,获得积分10
11秒前
结实的寄柔应助Kevin Huang采纳,获得30
11秒前
11秒前
丰富语兰完成签到,获得积分20
12秒前
13秒前
淡然幻珊完成签到,获得积分10
13秒前
14秒前
chenchen发布了新的文献求助10
16秒前
16秒前
研友_8yN60L完成签到,获得积分10
17秒前
英勇凝旋完成签到,获得积分10
17秒前
甜蜜的物语完成签到,获得积分10
17秒前
17秒前
七里香完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
19秒前
端庄的魔镜完成签到 ,获得积分10
21秒前
21秒前
完美世界应助haode采纳,获得10
22秒前
22秒前
zx完成签到 ,获得积分10
23秒前
Jasper应助丰富语兰采纳,获得10
24秒前
aa1718发布了新的文献求助10
24秒前
化工兔发布了新的文献求助10
24秒前
24秒前
沉默的半凡完成签到,获得积分10
25秒前
温乘云发布了新的文献求助10
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3398621
求助须知:如何正确求助?哪些是违规求助? 3007230
关于积分的说明 8825105
捐赠科研通 2694592
什么是DOI,文献DOI怎么找? 1476070
科研通“疑难数据库(出版商)”最低求助积分说明 682620
邀请新用户注册赠送积分活动 676096