Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems

CMA-ES公司 协方差矩阵 数学优化 渡线 计算机科学 操作员(生物学) 最优化问题 差异进化 协方差 基质(化学分析) 算法 数学 人工智能 水准点(测量) 协方差矩阵的估计 化学 材料科学 地理 复合材料 抑制因子 统计 基因 转录因子 生物化学 大地测量学
作者
Noor H. Awad,Mostafa Z. Ali,Ponnuthurai Nagaratnam Suganthan
标识
DOI:10.1109/cec.2017.7969336
摘要

Many Differential Evolution algorithms are introduced in the literature to solve optimization problems with diverse set of characteristics. In this paper, we propose an extension of the previously published paper LSHADE-EpSin that was ranked as the joint winner in the real-parameter single objective optimization competition, CEC 2016. The contribution of this work constitutes two major modifications that have been added to enhance the performance: ensemble of sinusoidal approaches based on performance adaptation and covariance matrix learning for the crossover operator. Two sinusoidal waves have been used to adapt the scaling factor: non-adaptive sinusoidal decreasing adjustment and an adaptive sinusoidal increasing adjustment. Instead of choosing one of the sinusoidal waves randomly, a performance adaptation scheme based on earlier success is used in this work. Moreover, covariance matrix learning with Euclidean neighborhood is used for the crossover operator to establish a suitable coordinate system, and to enhance the capability of LSHADE-EpSin to tackle problems with high correlation between the variables. The proposed algorithm, namely LSHADE-cnEpSin, is tested on the IEEE CEC2017 problems used in the Special Session and Competitions on Single Objective Bound Constrained Real-Parameter Single Objective Optimization. The results statistically affirm the efficiency of the proposed approach to obtain better results compared to other state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
花生完成签到,获得积分10
刚刚
bernie1023完成签到,获得积分10
刚刚
粗心的胜发布了新的文献求助10
1秒前
科研通AI2S应助忧虑的安青采纳,获得10
1秒前
3秒前
火星上鑫鹏完成签到,获得积分10
3秒前
3秒前
4秒前
Percy发布了新的文献求助10
4秒前
4秒前
Jasper应助核桃采纳,获得10
6秒前
充电宝应助核桃采纳,获得10
6秒前
koukaki完成签到,获得积分10
6秒前
owldan完成签到 ,获得积分10
6秒前
卢静静发布了新的文献求助10
8秒前
8秒前
10秒前
哈哈哈发布了新的文献求助10
10秒前
11秒前
Jasper应助wiwi采纳,获得30
11秒前
丘比特应助lxgz采纳,获得10
13秒前
HansStone完成签到,获得积分10
15秒前
塵埃发布了新的文献求助10
16秒前
健忘远山发布了新的文献求助10
16秒前
邱邱完成签到,获得积分20
16秒前
18秒前
拓跋箴完成签到,获得积分10
18秒前
在水一方应助鹿雅彤采纳,获得10
18秒前
JamesPei应助火星上鑫鹏采纳,获得10
19秒前
风清扬发布了新的文献求助10
19秒前
Vincey完成签到,获得积分10
21秒前
共享精神应助邱邱采纳,获得10
22秒前
Ade完成签到,获得积分10
22秒前
23秒前
拼搏的高高完成签到,获得积分10
23秒前
星辰大海应助坦率抽屉采纳,获得10
23秒前
小蘑菇应助MyMuses采纳,获得10
24秒前
传奇3应助仁爱的晓刚采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578