Adaptive fault feature extraction from wayside acoustic signals from train bearings

奇异值分解 方位(导航) 断层(地质) 声学 定子 工程类 计算机科学 信号(编程语言) 算法 控制理论(社会学) 语音识别 物理 人工智能 电气工程 地质学 地震学 程序设计语言 控制(管理)
作者
Dingcheng Zhang,Mani Entezami,Edward Stewart,Clive Roberts,Dejie Yu
出处
期刊:Journal of Sound and Vibration [Elsevier BV]
卷期号:425: 221-238 被引量:59
标识
DOI:10.1016/j.jsv.2018.04.004
摘要

Wayside acoustic detection of train bearing faults plays a significant role in maintaining safety in the railway transport system. However, the bearing fault information is normally masked by strong background noises and harmonic interferences generated by other components (e.g. axles and gears). In order to extract the bearing fault feature information effectively, a novel method called improved singular value decomposition (ISVD) with resonance-based signal sparse decomposition (RSSD), namely the ISVD-RSSD method, is proposed in this paper. A Savitzky-Golay (S-G) smoothing filter is used to filter singular vectors (SVs) in the ISVD method as an extension of the singular value decomposition (SVD) theorem. Hilbert spectrum entropy and a stepwise optimisation strategy are used to optimize the S-G filter's parameters. The RSSD method is able to nonlinearly decompose the wayside acoustic signal of a faulty train bearing into high and low resonance components, the latter of which contains bearing fault information. However, the high level of noise usually results in poor decomposition results from the RSSD method. Hence, the collected wayside acoustic signal must first be de-noised using the ISVD component of the ISVD-RSSD method. Next, the de-noised signal is decomposed by using the RSSD method. The obtained low resonance component is then demodulated with a Hilbert transform such that the bearing fault can be detected by observing Hilbert envelope spectra. The effectiveness of the ISVD-RSSD method is verified through both laboratory field-based experiments as described in the paper. The results indicate that the proposed method is superior to conventional spectrum analysis and ensemble empirical mode decomposition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私的芹应助yu采纳,获得10
刚刚
SPUwangshunfeng完成签到,获得积分10
刚刚
风趣剑鬼发布了新的文献求助10
刚刚
lemon发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
壮观的擎发布了新的文献求助10
2秒前
Alyssa完成签到,获得积分10
2秒前
3秒前
小蘑菇应助Shrine采纳,获得10
3秒前
3秒前
木鸽子发布了新的文献求助10
3秒前
善学以致用应助唐盼烟采纳,获得10
3秒前
麻匪胡万完成签到 ,获得积分10
3秒前
3秒前
3秒前
超级菠菠完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
雪妮儿完成签到,获得积分10
6秒前
还不错发布了新的文献求助10
6秒前
慕慕倾发布了新的文献求助10
6秒前
6秒前
菠萝为什么坑坑洼洼完成签到,获得积分20
7秒前
小二郎应助nightmare采纳,获得10
7秒前
哇哇哇哇我应助袁不评采纳,获得20
7秒前
NONO发布了新的文献求助10
7秒前
8秒前
8秒前
ding应助WSGQT采纳,获得10
9秒前
9秒前
9秒前
xiumei发布了新的文献求助10
9秒前
10秒前
Ann完成签到,获得积分10
11秒前
CodeCraft应助dingding采纳,获得30
11秒前
Yan完成签到,获得积分10
12秒前
卡卡西应助kira采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771