材料科学
双层
钙钛矿(结构)
能量转换效率
光电子学
电极
纳米技术
化学工程
膜
遗传学
生物
工程类
物理化学
化学
作者
Sunihl Ma,Jihoon Ahn,Yunjung Oh,Hyeok-Chan Kwon,Eun‐Song Lee,Kyungmi Kim,Seong-Cheol Yun,Jooho Moon
标识
DOI:10.1021/acsami.8b00549
摘要
Organic-inorganic hybrid perovskite solar cells (PSCs) are considered promising materials for low-cost solar energy harvesting technology. An electron transport layer (ETL), which facilitates the extraction of photogenerated electrons and their transport to the electrodes, is a key component in planar PSCs. In this study, a new strategy to concurrently manipulate the electrical and optical properties of ETLs to improve the performance of PSCs is demonstrated. A careful control over the Ti alkoxide-based sol-gel chemistry leads to a craterlike porous/blocking bilayer TiO2 ETL with relatively uniform surface pores of 220 nm diameter. Additionally, the phase separation promoter added to the precursor solution enables nitrogen doping in the TiO2 lattice, thus generating oxygen vacancies. The craterlike surface morphology allows for better light transmission because of reduced reflection, and the electrically conductive craterlike bilayer ETL enhances charge extraction and transport. Through these synergetic improvements in both optical and electrical properties, the power conversion efficiency of craterlike bilayer TiO2 ETL-based PSCs could be increased from 13.7 to 16.0% as compared to conventional dense TiO2-based PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI