Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions

流水车间调度 数学优化 计算机科学 调度(生产过程) 优化算法 多目标优化 作业车间调度 算法 数学 嵌入式系统 布线(电子设计自动化)
作者
Junqing Li,Hongshi Sang,Yuyan Han,Cun-gang Wang,Kaizhou Gao
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:181: 584-598 被引量:211
标识
DOI:10.1016/j.jclepro.2018.02.004
摘要

This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the machine assignment priority vector and the scheduling vector. Second, four types of decoding approaches are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a right-shifting procedure is utilized to decrease the processing duration for all machines, thereby improving the energy consumption objective of the given solution. Furthermore, several deep-exploitation and deep-exploration strategies are developed to balance the global and local search abilities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with several efficient algorithms from the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
zhangfan发布了新的文献求助10
2秒前
nana发布了新的文献求助40
2秒前
2秒前
希望天下0贩的0应助7890733采纳,获得10
3秒前
科研通AI6应助32CA5采纳,获得10
3秒前
科研通AI6应助32CA5采纳,获得10
3秒前
FashionBoy应助32CA5采纳,获得10
4秒前
ingxiaiu完成签到,获得积分10
4秒前
Self发布了新的文献求助10
5秒前
kentonchow完成签到,获得积分0
5秒前
5秒前
leekk发布了新的文献求助10
5秒前
5秒前
5秒前
万嘉俊发布了新的文献求助10
6秒前
yyy完成签到,获得积分10
6秒前
flance完成签到 ,获得积分10
6秒前
7秒前
8秒前
LZ发布了新的文献求助10
8秒前
9秒前
9秒前
LNN发布了新的文献求助30
10秒前
年轻的小可完成签到 ,获得积分10
10秒前
superLmy完成签到 ,获得积分10
11秒前
吟游诗人发布了新的文献求助30
11秒前
Elytra完成签到,获得积分10
11秒前
zpctx发布了新的文献求助10
12秒前
小圈圈梦魇完成签到,获得积分10
12秒前
不知名网友完成签到,获得积分10
12秒前
12秒前
嘉1612完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
感动白开水完成签到,获得积分10
13秒前
14秒前
lin完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164