Determining disease evolution driver nodes in dementia networks

计算机科学 痴呆 可控性 图论 疾病 神经影像学 图形 功能磁共振成像 连接组学 神经科学 正电子发射断层摄影术 复杂网络 人工智能 理论计算机科学 心理学 功能连接 医学 连接体 数学 组合数学 病理 万维网 应用数学
作者
Amirhessam Tahmassebi,Katja Pinker,Anke Meyer‐Baese,Ali Moradi Amani
标识
DOI:10.1117/12.2293865
摘要

Imaging connectomics emerged as an important field in modern neuroimaging to represent the interaction of structural and functional brain areas. Static graph networks are the mathematical structure to capture these interactions modeled by Pearson correlations between the representative area signals. Dynamical functional resting state networks seen in most fMRI experiments can not be represented by the classic correlation graph network. The changes in brain connectivity observed in many neuro-degenerative diseases in longitudinal data series suggest that more sophisticated graph networks to capture the dynamical properties of the brain networks are required. Furthermore, certain brain areas seem to act as "disease epicenters" being responsible for the spread of neuro-degenerative diseases. To mathematically describe these aspects, we propose a novel framework based on pinning controllability applied to dynamic graphs and seek to determine the changes in the "driver nodes" during the course of the disease. In contrast to other current research in pinning controllability, we aim to identify the best driver nodes describing disease evolution with respect to connectivity changes and location of the best driver nodes in functional 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) and structural Magnetic Resonance Imaging (MRI) connectivity graphs in healthy controls (CN), and patients with mild cognitive impairment (MCI), and Alzheimer's disease (AD). We present the theoretical framework for determining the best driver nodes in connectivity graphs and their relation to disease evolution in dementia. We revolutionize the current graph analysis in brain networks and apply the concept of dynamic graph theory in connection with pinning controllability to reveal differences in the location of "disease epicenters" that play an important role in the temporal evolution of dementia. The described research will constitute a leap in biomedical research related to novel disease prediction trajectories and precision dementia therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
大力帽子应助jyq采纳,获得10
3秒前
sdshi发布了新的文献求助10
3秒前
77发布了新的文献求助10
3秒前
chen完成签到 ,获得积分10
5秒前
5秒前
zdq10068发布了新的文献求助10
5秒前
兰瓜瓜发布了新的文献求助10
6秒前
6秒前
Ye完成签到,获得积分10
6秒前
8秒前
是榤啊完成签到 ,获得积分10
8秒前
8秒前
沉静飞雪发布了新的文献求助10
8秒前
9秒前
Rain完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
亮仔发布了新的文献求助10
11秒前
www完成签到,获得积分10
12秒前
Rubyii发布了新的文献求助10
12秒前
zzzzzzz完成签到 ,获得积分10
13秒前
13秒前
13秒前
PORCO完成签到,获得积分10
14秒前
浮游应助Zac采纳,获得10
15秒前
16秒前
英姑应助西子采纳,获得10
17秒前
17秒前
yaoyao发布了新的文献求助10
18秒前
18秒前
yijibaoli完成签到 ,获得积分10
19秒前
19秒前
及禾发布了新的文献求助10
19秒前
研友_n2Qv2L发布了新的文献求助10
19秒前
20秒前
7788完成签到,获得积分10
21秒前
FyD关闭了FyD文献求助
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082