Determining disease evolution driver nodes in dementia networks

计算机科学 痴呆 可控性 图论 疾病 神经影像学 图形 功能磁共振成像 连接组学 神经科学 正电子发射断层摄影术 复杂网络 人工智能 理论计算机科学 心理学 功能连接 医学 连接体 数学 病理 组合数学 应用数学 万维网
作者
Amirhessam Tahmassebi,Katja Pinker,Anke Meyer‐Baese,Ali Moradi Amani
标识
DOI:10.1117/12.2293865
摘要

Imaging connectomics emerged as an important field in modern neuroimaging to represent the interaction of structural and functional brain areas. Static graph networks are the mathematical structure to capture these interactions modeled by Pearson correlations between the representative area signals. Dynamical functional resting state networks seen in most fMRI experiments can not be represented by the classic correlation graph network. The changes in brain connectivity observed in many neuro-degenerative diseases in longitudinal data series suggest that more sophisticated graph networks to capture the dynamical properties of the brain networks are required. Furthermore, certain brain areas seem to act as "disease epicenters" being responsible for the spread of neuro-degenerative diseases. To mathematically describe these aspects, we propose a novel framework based on pinning controllability applied to dynamic graphs and seek to determine the changes in the "driver nodes" during the course of the disease. In contrast to other current research in pinning controllability, we aim to identify the best driver nodes describing disease evolution with respect to connectivity changes and location of the best driver nodes in functional 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) and structural Magnetic Resonance Imaging (MRI) connectivity graphs in healthy controls (CN), and patients with mild cognitive impairment (MCI), and Alzheimer's disease (AD). We present the theoretical framework for determining the best driver nodes in connectivity graphs and their relation to disease evolution in dementia. We revolutionize the current graph analysis in brain networks and apply the concept of dynamic graph theory in connection with pinning controllability to reveal differences in the location of "disease epicenters" that play an important role in the temporal evolution of dementia. The described research will constitute a leap in biomedical research related to novel disease prediction trajectories and precision dementia therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小粒橙完成签到 ,获得积分10
2秒前
SunJc完成签到,获得积分10
2秒前
板凳完成签到 ,获得积分20
3秒前
5秒前
asdfghjk完成签到,获得积分10
5秒前
希望天下0贩的0应助落晨采纳,获得10
5秒前
diu完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助1234采纳,获得10
7秒前
8秒前
11秒前
Cker完成签到,获得积分10
12秒前
落晨发布了新的文献求助10
13秒前
health__up完成签到,获得积分10
13秒前
13秒前
14秒前
852应助昵称采纳,获得10
14秒前
666完成签到 ,获得积分10
14秒前
15秒前
16秒前
萧水白应助尽断采纳,获得10
16秒前
酷酷凤灵发布了新的文献求助10
18秒前
慕颜完成签到,获得积分10
18秒前
18秒前
shaun发布了新的文献求助10
22秒前
slb1319发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
ywhys完成签到,获得积分20
24秒前
25秒前
朱文琛完成签到,获得积分10
25秒前
昵称发布了新的文献求助10
27秒前
踏实的白羊完成签到,获得积分10
28秒前
Leisure_Lee完成签到,获得积分10
28秒前
29秒前
orixero应助酷酷凤灵采纳,获得10
29秒前
坚强亦丝发布了新的文献求助30
29秒前
chen完成签到,获得积分10
30秒前
cocolu应助zrd采纳,获得10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299957
求助须知:如何正确求助?哪些是违规求助? 2934810
关于积分的说明 8470613
捐赠科研通 2608363
什么是DOI,文献DOI怎么找? 1424166
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645611