Determining disease evolution driver nodes in dementia networks

计算机科学 痴呆 可控性 图论 疾病 神经影像学 图形 功能磁共振成像 连接组学 神经科学 正电子发射断层摄影术 复杂网络 人工智能 理论计算机科学 心理学 功能连接 医学 连接体 数学 组合数学 病理 万维网 应用数学
作者
Amirhessam Tahmassebi,Katja Pinker,Anke Meyer‐Baese,Ali Moradi Amani
标识
DOI:10.1117/12.2293865
摘要

Imaging connectomics emerged as an important field in modern neuroimaging to represent the interaction of structural and functional brain areas. Static graph networks are the mathematical structure to capture these interactions modeled by Pearson correlations between the representative area signals. Dynamical functional resting state networks seen in most fMRI experiments can not be represented by the classic correlation graph network. The changes in brain connectivity observed in many neuro-degenerative diseases in longitudinal data series suggest that more sophisticated graph networks to capture the dynamical properties of the brain networks are required. Furthermore, certain brain areas seem to act as "disease epicenters" being responsible for the spread of neuro-degenerative diseases. To mathematically describe these aspects, we propose a novel framework based on pinning controllability applied to dynamic graphs and seek to determine the changes in the "driver nodes" during the course of the disease. In contrast to other current research in pinning controllability, we aim to identify the best driver nodes describing disease evolution with respect to connectivity changes and location of the best driver nodes in functional 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) and structural Magnetic Resonance Imaging (MRI) connectivity graphs in healthy controls (CN), and patients with mild cognitive impairment (MCI), and Alzheimer's disease (AD). We present the theoretical framework for determining the best driver nodes in connectivity graphs and their relation to disease evolution in dementia. We revolutionize the current graph analysis in brain networks and apply the concept of dynamic graph theory in connection with pinning controllability to reveal differences in the location of "disease epicenters" that play an important role in the temporal evolution of dementia. The described research will constitute a leap in biomedical research related to novel disease prediction trajectories and precision dementia therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
1秒前
4秒前
wzk完成签到,获得积分10
5秒前
称心翠容完成签到,获得积分10
7秒前
LaixS完成签到,获得积分10
8秒前
尊敬代亦发布了新的文献求助10
9秒前
要笑cc完成签到,获得积分10
10秒前
青珊发布了新的文献求助10
12秒前
宣宣宣0733完成签到,获得积分10
12秒前
俊逸吐司完成签到 ,获得积分10
13秒前
ttxxcdx完成签到 ,获得积分10
14秒前
胡质斌完成签到,获得积分10
14秒前
充电宝应助科研通管家采纳,获得10
17秒前
18秒前
姚怜南完成签到,获得积分10
20秒前
青珊完成签到,获得积分10
22秒前
自觉石头完成签到 ,获得积分10
23秒前
VVTTWW完成签到 ,获得积分10
25秒前
感性的寄真完成签到 ,获得积分10
27秒前
zhang完成签到,获得积分10
30秒前
33秒前
比比谁的速度快应助zhang采纳,获得50
37秒前
绿袖子完成签到,获得积分10
39秒前
46秒前
刘刘完成签到 ,获得积分10
47秒前
执着夏岚完成签到 ,获得积分10
47秒前
Xzx1995完成签到 ,获得积分10
51秒前
Hululu完成签到 ,获得积分10
53秒前
淡然的芷荷完成签到 ,获得积分10
54秒前
GT完成签到,获得积分10
56秒前
qiancib202完成签到,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
等待的幼晴完成签到,获得积分10
1分钟前
负责灵萱完成签到 ,获得积分10
1分钟前
幽默的忆霜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
风光无限完成签到 ,获得积分20
1分钟前
庄海棠完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022