已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Determining disease evolution driver nodes in dementia networks

计算机科学 痴呆 可控性 图论 疾病 神经影像学 图形 功能磁共振成像 连接组学 神经科学 正电子发射断层摄影术 复杂网络 人工智能 理论计算机科学 心理学 功能连接 医学 连接体 数学 病理 组合数学 应用数学 万维网
作者
Amirhessam Tahmassebi,Katja Pinker,Anke Meyer‐Baese,Ali Moradi Amani
标识
DOI:10.1117/12.2293865
摘要

Imaging connectomics emerged as an important field in modern neuroimaging to represent the interaction of structural and functional brain areas. Static graph networks are the mathematical structure to capture these interactions modeled by Pearson correlations between the representative area signals. Dynamical functional resting state networks seen in most fMRI experiments can not be represented by the classic correlation graph network. The changes in brain connectivity observed in many neuro-degenerative diseases in longitudinal data series suggest that more sophisticated graph networks to capture the dynamical properties of the brain networks are required. Furthermore, certain brain areas seem to act as "disease epicenters" being responsible for the spread of neuro-degenerative diseases. To mathematically describe these aspects, we propose a novel framework based on pinning controllability applied to dynamic graphs and seek to determine the changes in the "driver nodes" during the course of the disease. In contrast to other current research in pinning controllability, we aim to identify the best driver nodes describing disease evolution with respect to connectivity changes and location of the best driver nodes in functional 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) and structural Magnetic Resonance Imaging (MRI) connectivity graphs in healthy controls (CN), and patients with mild cognitive impairment (MCI), and Alzheimer's disease (AD). We present the theoretical framework for determining the best driver nodes in connectivity graphs and their relation to disease evolution in dementia. We revolutionize the current graph analysis in brain networks and apply the concept of dynamic graph theory in connection with pinning controllability to reveal differences in the location of "disease epicenters" that play an important role in the temporal evolution of dementia. The described research will constitute a leap in biomedical research related to novel disease prediction trajectories and precision dementia therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伤心葫芦娃完成签到 ,获得积分10
2秒前
3秒前
星星完成签到,获得积分10
3秒前
泥泞o发布了新的文献求助10
7秒前
领导范儿应助青阳采纳,获得10
7秒前
5160完成签到,获得积分10
9秒前
乐研客完成签到,获得积分10
10秒前
12秒前
星星2完成签到,获得积分10
12秒前
FleeToMars完成签到 ,获得积分10
13秒前
小洁完成签到 ,获得积分10
13秒前
bji完成签到,获得积分10
15秒前
yige完成签到,获得积分10
16秒前
吃草草没完成签到 ,获得积分10
16秒前
18秒前
李晓萌发布了新的文献求助10
18秒前
天宇南神完成签到 ,获得积分10
18秒前
顾矜应助xxhxx采纳,获得10
18秒前
量子星尘发布了新的文献求助10
20秒前
hjc完成签到,获得积分10
23秒前
sailingluwl完成签到,获得积分10
24秒前
26秒前
Rae完成签到 ,获得积分10
28秒前
luster完成签到 ,获得积分10
28秒前
moonlight完成签到,获得积分10
29秒前
天使她男人完成签到,获得积分10
31秒前
小迷糊完成签到 ,获得积分10
31秒前
993494543完成签到,获得积分10
32秒前
33秒前
34秒前
lhq完成签到 ,获得积分10
35秒前
36秒前
Suttier完成签到 ,获得积分10
37秒前
xxhxx发布了新的文献求助10
39秒前
Yesyes完成签到,获得积分10
40秒前
舒心的草莓完成签到 ,获得积分20
40秒前
zxcv1发布了新的文献求助10
41秒前
41秒前
健康的小鸽子完成签到 ,获得积分10
43秒前
爱撒娇的妙竹完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704