Determining disease evolution driver nodes in dementia networks

计算机科学 痴呆 可控性 图论 疾病 神经影像学 图形 功能磁共振成像 连接组学 神经科学 正电子发射断层摄影术 复杂网络 人工智能 理论计算机科学 心理学 功能连接 医学 连接体 数学 组合数学 病理 万维网 应用数学
作者
Amirhessam Tahmassebi,Katja Pinker,Anke Meyer‐Baese,Ali Moradi Amani
标识
DOI:10.1117/12.2293865
摘要

Imaging connectomics emerged as an important field in modern neuroimaging to represent the interaction of structural and functional brain areas. Static graph networks are the mathematical structure to capture these interactions modeled by Pearson correlations between the representative area signals. Dynamical functional resting state networks seen in most fMRI experiments can not be represented by the classic correlation graph network. The changes in brain connectivity observed in many neuro-degenerative diseases in longitudinal data series suggest that more sophisticated graph networks to capture the dynamical properties of the brain networks are required. Furthermore, certain brain areas seem to act as "disease epicenters" being responsible for the spread of neuro-degenerative diseases. To mathematically describe these aspects, we propose a novel framework based on pinning controllability applied to dynamic graphs and seek to determine the changes in the "driver nodes" during the course of the disease. In contrast to other current research in pinning controllability, we aim to identify the best driver nodes describing disease evolution with respect to connectivity changes and location of the best driver nodes in functional 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) and structural Magnetic Resonance Imaging (MRI) connectivity graphs in healthy controls (CN), and patients with mild cognitive impairment (MCI), and Alzheimer's disease (AD). We present the theoretical framework for determining the best driver nodes in connectivity graphs and their relation to disease evolution in dementia. We revolutionize the current graph analysis in brain networks and apply the concept of dynamic graph theory in connection with pinning controllability to reveal differences in the location of "disease epicenters" that play an important role in the temporal evolution of dementia. The described research will constitute a leap in biomedical research related to novel disease prediction trajectories and precision dementia therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dmj完成签到,获得积分10
刚刚
Tomasong发布了新的文献求助10
1秒前
cetomacrogol完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
ALRISH发布了新的文献求助10
3秒前
Amberwdd发布了新的文献求助10
4秒前
sxy发布了新的文献求助10
5秒前
失眠的科研g完成签到,获得积分10
5秒前
风趣之云完成签到 ,获得积分10
5秒前
张琴英发布了新的文献求助10
6秒前
科研通AI6.1应助michael采纳,获得10
6秒前
悲伤小鸡蛋黄完成签到,获得积分10
6秒前
orixero应助Jjjjj采纳,获得10
6秒前
陈1完成签到 ,获得积分10
7秒前
TWD发布了新的文献求助10
7秒前
CodeCraft应助杨丽佳采纳,获得10
7秒前
尊敬向雪完成签到,获得积分10
8秒前
wangmeili.发布了新的文献求助10
8秒前
朴素臻完成签到,获得积分10
9秒前
萝卜家大小姐完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
Lucas应助机智采纳,获得10
11秒前
xh完成签到 ,获得积分10
12秒前
ldroc完成签到,获得积分10
12秒前
CipherSage应助尊敬向雪采纳,获得20
12秒前
小周发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
科研小白完成签到,获得积分10
13秒前
14秒前
赘婿应助Halcyon采纳,获得10
14秒前
寒冷的鞋子完成签到 ,获得积分10
14秒前
打打应助cccc采纳,获得10
14秒前
悦耳冰蓝发布了新的文献求助10
16秒前
斯文败类应助简单访卉采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784182
求助须知:如何正确求助?哪些是违规求助? 5681297
关于积分的说明 15463418
捐赠科研通 4913491
什么是DOI,文献DOI怎么找? 2644676
邀请新用户注册赠送积分活动 1592532
关于科研通互助平台的介绍 1547112