凸体
数学
球(数学)
Minkowski不等式
组合数学
正多边形
闵可夫斯基空间
纯数学
度量(数据仓库)
维数(图论)
数学分析
不平等
线性不等式
几何学
凸壳
排序不等式
计算机科学
数据库
作者
Andrea Colesanti,Galyna V. Livshyts
出处
期刊:De Gruyter eBooks
[De Gruyter]
日期:2020-08-10
卷期号:: 85-98
被引量:5
标识
DOI:10.1515/9783110656756-006
摘要
We show that there exists an ϵ(n) > 0, depending only on the dimension n,s o that for any symmetric convex body K in the ϵ(n)-neighborhood of Bn2 (in the C2 metric), the log-Brunn-Minkowski inequality |λK +0 (1 − λ)|≥ |K|λ|L|1−λ holds. The proof is based on the previous results from [7], as well as an additional “third derivative” argument, which allows us to establish a uniform neighborhood. As a consequence, we conclude that the uniform cone volume measure determines a symmetric convex body uniquely, provided that it is in a fixed neighborhood of any ball.
科研通智能强力驱动
Strongly Powered by AbleSci AI