An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

电解质 化学 阳极 锂(药物) 阴极保护 相间 化学工程 无机化学 碳酸盐 储能 电极 有机化学 物理 工程类 内分泌学 物理化学 功率(物理) 生物 医学 量子力学 遗传学
作者
Seoung‐Bum Son,Tao Gao,Steve Harvey,K. Xerxes Steirer,Adam Stokes,Andrew G. Norman,Chunsheng Wang,Arthur v. Cresce,Kang Xu,Chunmei Ban
出处
期刊:Nature Chemistry [Nature Portfolio]
卷期号:10 (5): 532-539 被引量:451
标识
DOI:10.1038/s41557-018-0019-6
摘要

Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications. Mg-based batteries possess potential advantages over their lithium counterparts; however, the use of reversible oxidation-resistant, carbonate-based electrolytes has been hindered because of their undesirable electrochemical reduction reactions. Now, by engineering a Mg2+-conductive artificial interphase on a Mg electrode surface, which prevents such reactivity, highly reversible Mg deposition/stripping in carbonate-based electrolytes has been demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YanuoK发布了新的文献求助10
1秒前
1秒前
负责钢铁侠完成签到 ,获得积分20
2秒前
小小酥被卷了完成签到,获得积分10
2秒前
CodeCraft应助Vincent采纳,获得10
3秒前
nnnd77发布了新的文献求助10
3秒前
4秒前
4秒前
hugoh发布了新的文献求助10
4秒前
星空_完成签到 ,获得积分10
5秒前
可爱邓邓发布了新的文献求助10
6秒前
7秒前
9秒前
cxy完成签到 ,获得积分10
9秒前
10秒前
南吕完成签到,获得积分10
10秒前
Maestro_S发布了新的文献求助10
10秒前
lywswxn完成签到,获得积分10
11秒前
12秒前
本本发布了新的文献求助10
13秒前
JamesPei应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
Fortune应助科研通管家采纳,获得150
14秒前
zj完成签到,获得积分10
14秒前
YanuoK完成签到,获得积分10
14秒前
15秒前
by完成签到,获得积分10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
szj发布了新的文献求助10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
刘泗青应助科研通管家采纳,获得10
15秒前
Xiaoxiao应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
Xiaoxiao应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190952
求助须知:如何正确求助?哪些是违规求助? 4374481
关于积分的说明 13621308
捐赠科研通 4228383
什么是DOI,文献DOI怎么找? 2319255
邀请新用户注册赠送积分活动 1317796
关于科研通互助平台的介绍 1267826