An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

电解质 化学 阳极 锂(药物) 阴极保护 相间 化学工程 无机化学 碳酸盐 储能 电极 有机化学 物理 工程类 内分泌学 物理化学 功率(物理) 生物 医学 量子力学 遗传学
作者
Seoung‐Bum Son,Tao Gao,Steve Harvey,K. Xerxes Steirer,Adam Stokes,Andrew G. Norman,Chunsheng Wang,Arthur v. Cresce,Kang Xu,Chunmei Ban
出处
期刊:Nature Chemistry [Springer Nature]
卷期号:10 (5): 532-539 被引量:451
标识
DOI:10.1038/s41557-018-0019-6
摘要

Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications. Mg-based batteries possess potential advantages over their lithium counterparts; however, the use of reversible oxidation-resistant, carbonate-based electrolytes has been hindered because of their undesirable electrochemical reduction reactions. Now, by engineering a Mg2+-conductive artificial interphase on a Mg electrode surface, which prevents such reactivity, highly reversible Mg deposition/stripping in carbonate-based electrolytes has been demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助潘潘采纳,获得10
1秒前
Lucas完成签到,获得积分10
1秒前
2秒前
善学以致用应助科研小白采纳,获得10
2秒前
saluo完成签到,获得积分10
2秒前
听雨发布了新的文献求助10
2秒前
gentille发布了新的文献求助10
3秒前
3秒前
清秀幻珊完成签到,获得积分10
3秒前
彭于晏女友完成签到,获得积分10
4秒前
4秒前
科勒基侈完成签到,获得积分10
4秒前
小羊许个愿完成签到,获得积分10
5秒前
5秒前
tian完成签到,获得积分10
6秒前
6秒前
美好海瑶完成签到,获得积分10
6秒前
LongSun发布了新的文献求助10
6秒前
陈花蕾发布了新的文献求助10
7秒前
刘JX发布了新的文献求助20
7秒前
漫步云端发布了新的文献求助10
7秒前
Jasper应助乐观的莫茗采纳,获得10
7秒前
7秒前
安烁完成签到 ,获得积分10
7秒前
CipherSage应助xnz采纳,获得10
7秒前
7秒前
8秒前
浮游应助LFG采纳,获得30
8秒前
大模型应助小白采纳,获得10
9秒前
10秒前
小青椒应助科研通管家采纳,获得30
10秒前
慕青应助吱吱吱吱采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
Manphie应助科研通管家采纳,获得20
10秒前
俏皮绿蓉完成签到,获得积分10
10秒前
chenqiumu应助科研通管家采纳,获得30
10秒前
10秒前
Kirito应助科研通管家采纳,获得50
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351368
求助须知:如何正确求助?哪些是违规求助? 4484455
关于积分的说明 13959104
捐赠科研通 4383984
什么是DOI,文献DOI怎么找? 2408721
邀请新用户注册赠送积分活动 1401290
关于科研通互助平台的介绍 1374800