Accurate and Energy-Efficient GPS-Less Outdoor Localization

计算机科学 地标 惯性测量装置 电话 航位推算 全球定位系统 可用性 实时计算 计算机视觉 Android(操作系统) 人工智能 人机交互 电信 哲学 语言学 操作系统
作者
H. H. Aly,Anas Basalamah,Moustafa Youssef
出处
期刊:ACM Transactions on Spatial Algorithms and Systems 卷期号:3 (2): 1-31 被引量:47
标识
DOI:10.1145/3085575
摘要

Location-based services have become an important part of our daily lives. However, such services require continuous user tracking while preserving the scarce cell-phone battery resource. In this article, we present Dejavu , a system that uses standard cell-phone sensors to provide accurate and energy-efficient outdoor localization. Dejavu is capable of localizing and navigating both pedestrian and in-vehicle users in real time. Our analysis shows that, whether walking or in-vehicle, when the user encounters a road landmark such as going inside a tunnel, ascending a staircase, or even moving over a bump, all these different landmarks affect the inertial sensors on the phone in a unique pattern. Dejavu employs a dead-reckoning localization approach and leverages these road landmarks, among other automatically discovered virtual landmarks, to reset the dead-reckoning accumulated error and achieve accurate localization. To maintain a low energy profile, Dejavu uses only energy-efficient sensors or sensors that are already running for other purposes. Moreover, Dejavu provides a localization confidence measure along with its predicted location. This improves the usability of the predicted location from end users’ perspective. We present the design of Dejavu and how it leverages crowd-sourcing to automatically learn virtual landmarks and their locations. Our evaluation results from implementation on different Android devices using different testbeds showing that Dejavu can localize cell-phones in vehicles with a median error of 8.4 m in city roads and 16.6 m on highways and can localize cell-phones carried by pedestrians with a median error of 3.0m. Moreover, compared to the global position system (GPS) and other state-of-the-art systems, Dejavu can extend the battery lifetime by up to 347%, while achieving even better localization results than GPS in the more challenging in-city areas. In addition, Dejavu estimates the localization confidence measure accurately with a median error of 2.3m and 31cm for in-vehicle and pedestrian users, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
刚刚
布兜兜完成签到,获得积分10
1秒前
1秒前
1秒前
白诺言发布了新的文献求助10
2秒前
星辰大海应助江江采纳,获得10
2秒前
2秒前
lololoan完成签到,获得积分10
2秒前
2秒前
特大包包发布了新的文献求助10
3秒前
莲枳榴莲发布了新的文献求助30
3秒前
婷_1988完成签到,获得积分10
4秒前
思源应助暴躁的元灵采纳,获得10
4秒前
无花果应助hhh采纳,获得10
4秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
追寻德地发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
结构小工完成签到,获得积分10
7秒前
JamesPei应助魏士博采纳,获得10
7秒前
脑洞疼应助ANDUIN采纳,获得10
8秒前
小闵发布了新的文献求助10
9秒前
昭昭如愿发布了新的文献求助10
9秒前
上官若男应助真白白鸭采纳,获得10
9秒前
香蕉觅云应助汤圆有奶瓶采纳,获得10
10秒前
赘婿应助长白采纳,获得10
10秒前
10秒前
卡皮巴拉yuan应助sy采纳,获得10
10秒前
黎明森发布了新的文献求助10
10秒前
11秒前
关关过应助yuk采纳,获得20
12秒前
东晓发布了新的文献求助10
12秒前
12秒前
12秒前
lyyyyyyyy发布了新的文献求助10
12秒前
12秒前
SciGPT应助tangli采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444