Accurate and Energy-Efficient GPS-Less Outdoor Localization

计算机科学 地标 惯性测量装置 电话 航位推算 全球定位系统 可用性 实时计算 计算机视觉 Android(操作系统) 人工智能 人机交互 电信 语言学 操作系统 哲学
作者
H. H. Aly,Anas Basalamah,Moustafa Youssef
出处
期刊:ACM Transactions on Spatial Algorithms and Systems 卷期号:3 (2): 1-31 被引量:47
标识
DOI:10.1145/3085575
摘要

Location-based services have become an important part of our daily lives. However, such services require continuous user tracking while preserving the scarce cell-phone battery resource. In this article, we present Dejavu , a system that uses standard cell-phone sensors to provide accurate and energy-efficient outdoor localization. Dejavu is capable of localizing and navigating both pedestrian and in-vehicle users in real time. Our analysis shows that, whether walking or in-vehicle, when the user encounters a road landmark such as going inside a tunnel, ascending a staircase, or even moving over a bump, all these different landmarks affect the inertial sensors on the phone in a unique pattern. Dejavu employs a dead-reckoning localization approach and leverages these road landmarks, among other automatically discovered virtual landmarks, to reset the dead-reckoning accumulated error and achieve accurate localization. To maintain a low energy profile, Dejavu uses only energy-efficient sensors or sensors that are already running for other purposes. Moreover, Dejavu provides a localization confidence measure along with its predicted location. This improves the usability of the predicted location from end users’ perspective. We present the design of Dejavu and how it leverages crowd-sourcing to automatically learn virtual landmarks and their locations. Our evaluation results from implementation on different Android devices using different testbeds showing that Dejavu can localize cell-phones in vehicles with a median error of 8.4 m in city roads and 16.6 m on highways and can localize cell-phones carried by pedestrians with a median error of 3.0m. Moreover, compared to the global position system (GPS) and other state-of-the-art systems, Dejavu can extend the battery lifetime by up to 347%, while achieving even better localization results than GPS in the more challenging in-city areas. In addition, Dejavu estimates the localization confidence measure accurately with a median error of 2.3m and 31cm for in-vehicle and pedestrian users, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追光少年完成签到,获得积分10
刚刚
明亮面包发布了新的文献求助10
1秒前
1秒前
1秒前
lipppu发布了新的文献求助30
1秒前
三石呦423完成签到,获得积分10
2秒前
2秒前
2秒前
qz完成签到,获得积分10
2秒前
领导范儿应助TAO采纳,获得10
2秒前
ly发布了新的文献求助10
3秒前
王成发布了新的文献求助10
3秒前
3秒前
3秒前
小乌云完成签到,获得积分10
4秒前
海光完成签到,获得积分10
5秒前
5秒前
5秒前
糯米糍完成签到,获得积分10
5秒前
林正心完成签到,获得积分10
6秒前
科目三应助甜美冥茗采纳,获得10
7秒前
t49779133发布了新的文献求助10
7秒前
明亮面包完成签到,获得积分10
8秒前
8秒前
追光少年发布了新的文献求助30
8秒前
小明发布了新的文献求助10
9秒前
宁静致远发布了新的文献求助10
9秒前
张础锐发布了新的文献求助10
10秒前
11秒前
dr1nk发布了新的文献求助10
12秒前
华夫萨摩耶完成签到,获得积分10
12秒前
12秒前
老大蒂亚戈应助ly采纳,获得10
12秒前
dong应助骆丹妗采纳,获得10
13秒前
清图发布了新的文献求助20
14秒前
科研通AI2S应助三石呦423采纳,获得10
14秒前
VickyS完成签到,获得积分10
15秒前
殷勤的不弱完成签到,获得积分10
15秒前
独特笙完成签到,获得积分10
16秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011256
求助须知:如何正确求助?哪些是违规求助? 3550992
关于积分的说明 11307020
捐赠科研通 3285194
什么是DOI,文献DOI怎么找? 1810979
邀请新用户注册赠送积分活动 886679
科研通“疑难数据库(出版商)”最低求助积分说明 811596