Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine

传感器融合 人工智能 计算机科学 极限学习机 无人机 生物 人工神经网络 遗传学
作者
Maitiniyazi Maimaitijiang,Abduwasit Ghulam,Paheding Sidike,Sean Hartling,Matthew Maimaitiyiming,Kyle T. Peterson,Ethan Shavers,Jack Fishman,Jim Peterson,Suhas Kadam,Joel G. Burken,Felix Fritschi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:134: 43-58 被引量:327
标识
DOI:10.1016/j.isprsjprs.2017.10.011
摘要

Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sensors that allow efficient information fusion. The objective of this study was to evaluate the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors integrated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing season at a site established near Columbia, Missouri, USA. From these images, vegetation indices were extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction was developed. Then, spectral indices/features were combined to model and predict crop biophysical and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the highest accuracy for Chl a + b content estimation was obtained by fusion of information from all three sensors with an RMSE of 11.6%. (2) Among the plant biophysical variables, LAI was best predicted by RGB and thermal data fusion while multispectral and thermal data fusion was found to be best for biomass estimation. (3) For estimation of the above mentioned plant traits of soybean from multi-sensor data fusion, ELR yields promising results compared to PLSR and SVR in this study. This research indicates that fusion of low-cost multiple sensor data within a machine learning framework can provide relatively accurate estimation of plant traits and provide valuable insight for high spatial precision in agriculture and plant stress assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rylee完成签到,获得积分10
1秒前
Owen应助愉快的灭男采纳,获得10
4秒前
5秒前
天真炎彬完成签到,获得积分10
5秒前
5秒前
星辰大海应助醉熏的鑫采纳,获得10
7秒前
秋半雪完成签到,获得积分10
7秒前
科研通AI2S应助ComVivas采纳,获得10
7秒前
大模型应助故事讲完啦采纳,获得10
9秒前
打打应助卡皮巴拉采纳,获得10
9秒前
如意枫叶发布了新的文献求助10
10秒前
incloud发布了新的文献求助10
12秒前
Rondab应助水清木华采纳,获得10
12秒前
皮城小伙完成签到,获得积分10
13秒前
13秒前
15秒前
19秒前
骆闻发布了新的文献求助10
20秒前
zdd关闭了zdd文献求助
20秒前
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
22秒前
小王应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
风清扬应助科研通管家采纳,获得10
22秒前
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
24秒前
中和皇极应助111采纳,获得10
24秒前
明亮芯发布了新的文献求助10
24秒前
岳岳岳完成签到 ,获得积分10
25秒前
平淡的亦丝完成签到,获得积分10
26秒前
林正心发布了新的文献求助20
27秒前
闪闪静槐完成签到,获得积分10
27秒前
Lucas应助小吴同志采纳,获得10
27秒前
zyj发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662