阳极
超晶格
多孔性
材料科学
电化学
锂(药物)
化学工程
离子
电极
纳米技术
复合材料
光电子学
化学
内分泌学
工程类
物理化学
有机化学
医学
作者
Lingjun Li,Qi Yao,Jiequn Liu,Kaibo Ye,Boyu Liu,Zengsheng Liu,Huiping Yang,Zhaoyong Chen,Junfei Duan,Bao Zhang
标识
DOI:10.3389/fchem.2018.00153
摘要
As a promising high-capacity anode material for Li-ion batteries, NiMn2O4 always suffers from the poor intrinsic conductivity and the architectural collapse originating from the volume expansion during cycle. Herein, a combined structure and architecture modulation is proposed to tackle concurrently the two handicaps, via a facile and well-controlled solvothermal approach to synthesize NiMn2O4/NiCo2O4 mesocrystals with superlattice structure and hollow multi-porous architecture. It is demonstrated that the obtained NiCo1.5Mn0.5O4 sample is made up of a new mixed-phase NiMn2O4/NiCo2O4 compound system, with a high charge capacity of 532.2 mAh g-1 with 90.4% capacity retention after 100 cycles at a current density of 1 A g-1. The enhanced electrochemical performance can be attributed to the synergistic effects of the superlattice structure and the hollow multi-porous architecture of the NiMn2O4/NiCo2O4 compound. The superlattice structure can improve ionic conductivity to enhance charge transport kinetics of the bulk material, while the hollow multi-porous architecture can provide enough void spaces to alleviate the architectural change during cycling, and shorten the lithium ions diffusion and electron-transportation distances.
科研通智能强力驱动
Strongly Powered by AbleSci AI