Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization

混乱的 差异进化 人口 计算机科学 水准点(测量) 算法 数学优化 逻辑图 进化算法 人工智能 趋同(经济学) 数学 人口学 经济 社会学 经济增长 地理 大地测量学
作者
Rehab Ali Ibrahim,Mohamed Abd Elaziz,Songfeng Lu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:108: 1-27 被引量:183
标识
DOI:10.1016/j.eswa.2018.04.028
摘要

Abstract In this paper, an improved version of the Grey Wolf Optimizer (GWO) is proposed to improve the exploration and the exploitation ability of the GWO algorithm. This improvement is performed through using the chaotic logistic map, the Opposition-Based Learning (OBL), the differential evolution(DE), and the disruption operator (DO). Where, the chaotic logistic map and the OBL are used to initialize the candidate solutions and these approaches avoid the drawbacks of the random population and increase the convergence of the algorithm. Then, the DE operators are combined with the GWO algorithm, in which, the DE operators work as a local search mechanism to improve the exploitation ability of the GWO through updating the population. Also, after updating the solutions by using a hybrid between the GWO and the DE, the DO is used to enhance the exploration ability, in which, the DO is used to maintain the diversity of the population. Therefore, the combinations with chaotic logistic map, OBL, DE, and DO, provide the GWO with tools to better balance between the exploration and the exploitation of the search space without affecting the computational time required for this task. The proposed algorithm, called COGWO2D, is compared with other seven algorithms through a set of experimental series that have been performed over two benchmark functions, the classical CEC2005, and the CEC2014. Also, the performance of the proposed algorithm to improve the classification of the galaxy images is evaluated, where it is used as a feature selection method. The aim of this experiment is to select the optimal subset of features from the extracted features of the galaxy images. The experimental results support the efficacy of the proposed approach to find the optimal solutions of the global optimization problem, as well as, increase the accuracy of the classification of the galaxy images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
廉洁发布了新的文献求助10
1秒前
冬日毛衣完成签到 ,获得积分10
1秒前
zwhuaixu22完成签到 ,获得积分10
2秒前
渡劫完成签到,获得积分10
2秒前
3秒前
平淡的翅膀完成签到 ,获得积分10
4秒前
南枝焙雪完成签到 ,获得积分10
5秒前
Star完成签到 ,获得积分10
5秒前
银海里的玫瑰_完成签到 ,获得积分10
5秒前
碧蓝雨安完成签到,获得积分10
6秒前
平淡的雁开应助菜鸟采纳,获得10
6秒前
邓娅琴完成签到 ,获得积分10
8秒前
廉洁完成签到,获得积分10
8秒前
王大雪完成签到 ,获得积分10
9秒前
9秒前
9秒前
老仙翁完成签到,获得积分10
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
WJH完成签到 ,获得积分10
12秒前
qiqi完成签到,获得积分10
14秒前
倪好完成签到,获得积分10
16秒前
ZHANG完成签到 ,获得积分20
16秒前
朴素海亦完成签到 ,获得积分10
16秒前
lx840518完成签到 ,获得积分10
16秒前
小白鼠完成签到 ,获得积分10
17秒前
ding应助一一采纳,获得10
19秒前
ru完成签到 ,获得积分10
19秒前
20秒前
威威完成签到,获得积分10
20秒前
现实的日记本完成签到,获得积分10
20秒前
曾建完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
壮观飞鸟完成签到,获得积分10
21秒前
耍酷的雪糕完成签到,获得积分10
22秒前
22秒前
Servant2023完成签到,获得积分0
22秒前
飞快的雅青完成签到 ,获得积分10
22秒前
CoCo完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597737
求助须知:如何正确求助?哪些是违规求助? 4009200
关于积分的说明 12410079
捐赠科研通 3688475
什么是DOI,文献DOI怎么找? 2033210
邀请新用户注册赠送积分活动 1066477
科研通“疑难数据库(出版商)”最低求助积分说明 951683