生物光子学
光子上转换
材料科学
纳米技术
光电子学
纳米颗粒
镧系元素
猝灭(荧光)
光子学
光学
兴奋剂
荧光
化学
物理
离子
有机化学
作者
David J. Garfield,Nicholas J. Borys,Samia M. Hamed,Nicole A. Torquato,Cheryl Tajon,Bining Tian,Brian Shevitski,Edward S. Barnard,Yung Doug Suh,Shaul Aloni,Jeffrey B. Neaton,Emory M. Chan,Bruce E. Cohen,P. James Schuck
出处
期刊:Nature Photonics
[Springer Nature]
日期:2018-04-20
卷期号:12 (7): 402-407
被引量:218
标识
DOI:10.1038/s41566-018-0156-x
摘要
Efficient photon upconversion at low light intensities promises major advances in technologies spanning solar energy harvesting to deep-tissue biophotonics. Here, we discover the critical mechanisms that enable near-infrared dye antennas to significantly enhance performance in lanthanide-doped upconverting nanoparticle (UCNP) systems, and leverage these findings to design dye–UCNP hybrids with a 33,000-fold increase in brightness and a 100-fold increase in efficiency over bare UCNPs. We show that increasing the lanthanide content in the UCNPs shifts the primary energy donor from the dye singlet to its triplet, and the resultant triplet states then mediate energy transfer into the nanocrystals. Time-gated phosphorescence, density functional theory, singlet lifetimes and triplet-quenching experiments support these findings. This interplay between the excited-state populations in organic antennas and the composition of UCNPs presents new design rules that overcome the limitations of previous upconverting materials, enabling performances now relevant for photovoltaics, biophotonics and infrared detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI