A vision based system for underwater docking

水下 计算机科学 对接(动物) 人工智能 卷积神经网络 人工神经网络 实时计算 计算机视觉 医学 海洋学 地质学 护理部
作者
Shuang Liu,Mete Özay,Takayuki Okatani,Hongli Xu,Kai Sun,Lin Yang
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.1712.04138
摘要

Autonomous underwater vehicles (AUVs) have been deployed for underwater exploration. However, its potential is confined by its limited on-board battery energy and data storage capacity. This problem has been addressed using docking systems by underwater recharging and data transfer for AUVs. In this work, we propose a vision based framework for underwater docking following these systems. The proposed framework comprises two modules; (i) a detection module which provides location information on underwater docking stations in 2D images captured by an on-board camera, and (ii) a pose estimation module which recovers the relative 3D position and orientation between docking stations and AUVs from the 2D images. For robust and credible detection of docking stations, we propose a convolutional neural network called Docking Neural Network (DoNN). For accurate pose estimation, a perspective-n-point algorithm is integrated into our framework. In order to examine our framework in underwater docking tasks, we collected a dataset of 2D images, named Underwater Docking Images Dataset (UDID), in an experimental water pool. To the best of our knowledge, UDID is the first publicly available underwater docking dataset. In the experiments, we first evaluate performance of the proposed detection module on UDID and its deformed variations. Next, we assess the accuracy of the pose estimation module by ground experiments, since it is not feasible to obtain true relative position and orientation between docking stations and AUVs under water. Then, we examine the pose estimation module by underwater experiments in our experimental water pool. Experimental results show that the proposed framework can be used to detect docking stations and estimate their relative pose efficiently and successfully, compared to the state-of-the-art baseline systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Aurora采纳,获得10
2秒前
_Y_X_L_发布了新的文献求助10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
卓隶发布了新的文献求助10
3秒前
科研通AI5应助无敌老金刚采纳,获得10
3秒前
无情灯泡发布了新的文献求助10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得30
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
科目三应助邱邱采纳,获得10
3秒前
英勇绮南发布了新的文献求助10
4秒前
4秒前
5秒前
共享精神应助晕w采纳,获得10
5秒前
周杰完成签到,获得积分10
5秒前
sb完成签到,获得积分10
6秒前
HongMou完成签到,获得积分10
6秒前
Ling完成签到,获得积分10
6秒前
不学无墅发布了新的文献求助10
7秒前
7秒前
华仔应助chongmu采纳,获得10
7秒前
史小菜应助伊丽莎白采纳,获得10
7秒前
晨儿完成签到,获得积分10
8秒前
xtutang完成签到,获得积分10
8秒前
yue完成签到 ,获得积分20
9秒前
xiaoliu发布了新的文献求助10
9秒前
大模型应助樂酉采纳,获得10
9秒前
小学生应助杏仁采纳,获得10
9秒前
爆米花应助ddd采纳,获得10
9秒前
9秒前
9秒前
wanci应助无情灯泡采纳,获得10
9秒前
9秒前
小蘑菇应助杰森斯坦虎采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657769
求助须知:如何正确求助?哪些是违规求助? 3219792
关于积分的说明 9733339
捐赠科研通 2928765
什么是DOI,文献DOI怎么找? 1603671
邀请新用户注册赠送积分活动 756684
科研通“疑难数据库(出版商)”最低求助积分说明 734055