Hidden physics models: Machine learning of nonlinear partial differential equations

偏微分方程 非线性系统 计算机科学 动力系统理论 微分方程 推论 数学 人工智能 物理 数学分析 量子力学
作者
Maziar Raissi,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:357: 125-141 被引量:1085
标识
DOI:10.1016/j.jcp.2017.11.039
摘要

While there is currently a lot of enthusiasm about “big data”, useful data is usually “small” and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier–Stokes, Schrödinger, Kuramoto–Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助木仔仔采纳,获得20
2秒前
王逗逗发布了新的文献求助10
3秒前
weiyongswust完成签到,获得积分10
3秒前
4秒前
感动宛海发布了新的文献求助10
4秒前
5秒前
5秒前
单身的乌发布了新的文献求助10
6秒前
柒月小鱼完成签到,获得积分10
7秒前
大壮完成签到,获得积分10
7秒前
奔跑石小猛完成签到,获得积分10
7秒前
桐桐应助Jotaro采纳,获得10
7秒前
7秒前
闪闪的正豪完成签到,获得积分10
9秒前
糊涂的中恶完成签到 ,获得积分10
9秒前
9秒前
9秒前
姜思意发布了新的文献求助10
9秒前
柒月小鱼发布了新的文献求助10
10秒前
wxt发布了新的文献求助30
10秒前
11秒前
12秒前
14秒前
萌神完成签到,获得积分20
15秒前
15秒前
16秒前
刘jinkai发布了新的文献求助10
20秒前
21秒前
gzf发布了新的文献求助10
22秒前
Orange应助半夏采纳,获得10
23秒前
上官若男应助dwz采纳,获得10
25秒前
25秒前
hmf1995完成签到 ,获得积分10
26秒前
27秒前
27秒前
一只小陈陈完成签到,获得积分10
27秒前
27秒前
浅尝离白应助谦让的小姜采纳,获得30
29秒前
hudu发布了新的文献求助10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053