劈形算符
欧米茄
领域(数学分析)
有界函数
组合数学
物理
边界(拓扑)
扩散
数学
数学分析
量子力学
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2018-01-01
卷期号:23 (4): 1675-1688
被引量:22
标识
DOI:10.3934/dcdsb.2018069
摘要
In this paper, we deal with the following coupled chemotaxis-haptotaxis system modeling cancer invasionwith nonlinear diffusion, $\left\{ \begin{array}{l}{u_t} = \Delta {u^m} - \chi \nabla \cdot \left( {u \cdot \nabla v} \right) - \xi \nabla \cdot \left( {u \cdot \nabla w} \right) + \mu u\left( {1 - u - w} \right),{\rm{in}}\;\Omega \times {{\mathbb{R}}^ + },\\{v_t} - \nabla v + v = u,\;{\rm{in}}\;\Omega \times {{\mathbb{R}}^ + },\\{w_t} = - vw,\;\;{\rm{in}}\;\Omega \times {{\mathbb{R}}^ + },\end{array} \right.$ where $Ω\subset\mathbb R^N$ ( $N≥ 3$ ) is a bounded domain. Under zero-flux boundary conditions, we showed that for any $m>0$ , the problem admits a global bounded weak solution for any large initial datum if $\frac{χ}{μ}$ is appropriately small. The slow diffusion case ( $m>1$ ) of this problem have been studied by many authors [14,7,19,23], in which, the boundedness and the global in time solution are established for $m>\frac{2N}{N+2}$ , but the cases $m≤ \frac{2N}{N+2}$ remain open.
科研通智能强力驱动
Strongly Powered by AbleSci AI