亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning

随机森林 计算机科学 机器学习 人工智能 回归 决策树 数据挖掘 叶面积指数 统计 数学 生态学 生物
作者
Rasmus Houborg,Matthew F. McCabe
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:135: 173-188 被引量:182
标识
DOI:10.1016/j.isprsjprs.2017.10.004
摘要

With an increasing volume and dimensionality of Earth observation data, enhanced integration of machine-learning methodologies is needed to effectively analyze and utilize these information rich datasets. In machine-learning, a training dataset is required to establish explicit associations between a suite of explanatory ‘predictor’ variables and the target property. The specifics of this learning process can significantly influence model validity and portability, with a higher generalization level expected with an increasing number of observable conditions being reflected in the training dataset. Here we propose a hybrid training approach for leaf area index (LAI) estimation, which harnesses synergistic attributes of scattered in-situ measurements and systematically distributed physically based model inversion results to enhance the information content and spatial representativeness of the training data. To do this, a complimentary training dataset of independent LAI was derived from a regularized model inversion of RapidEye surface reflectances and subsequently used to guide the development of LAI regression models via Cubist and random forests (RF) decision tree methods. The application of the hybrid training approach to a broad set of Landsat 8 vegetation index (VI) predictor variables resulted in significantly improved LAI prediction accuracies and spatial consistencies, relative to results relying on in-situ measurements alone for model training. In comparing the prediction capacity and portability of the two machine-learning algorithms, a pair of relatively simple multi-variate regression models established by Cubist performed best, with an overall relative mean absolute deviation (rMAD) of ∼11%, determined based on a stringent scene-specific cross-validation approach. In comparison, the portability of RF regression models was less effective (i.e., an overall rMAD of ∼15%), which was attributed partly to model saturation at high LAI in association with inherent extrapolation and transferability limitations. Explanatory VIs formed from bands in the near-infrared (NIR) and shortwave infrared domains (e.g., NDWI) were associated with the highest predictive ability, whereas Cubist models relying entirely on VIs based on NIR and red band combinations (e.g., NDVI) were associated with comparatively high uncertainties (i.e., rMAD ∼ 21%). The most transferable and best performing models were based on combinations of several predictor variables, which included both NDWI- and NDVI-like variables. In this process, prior screening of input VIs based on an assessment of variable relevance served as an effective mechanism for optimizing prediction accuracies from both Cubist and RF. While this study demonstrated benefit in combining data mining operations with physically based constraints via a hybrid training approach, the concept of transferability and portability warrants further investigations in order to realize the full potential of emerging machine-learning techniques for regression purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
天天快乐应助迷路雁采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Dritsw应助零度采纳,获得20
7秒前
8秒前
火星上的飞鸟完成签到,获得积分10
17秒前
juno完成签到,获得积分10
27秒前
李健的小迷弟应助juno采纳,获得10
31秒前
学习使人头大完成签到 ,获得积分10
34秒前
37秒前
SCIfafafafa发布了新的文献求助10
42秒前
CodeCraft应助SCIfafafafa采纳,获得10
49秒前
SCIfafafafa完成签到,获得积分20
1分钟前
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
wzd完成签到,获得积分10
1分钟前
xi12345完成签到,获得积分10
1分钟前
1分钟前
二十八画生完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Dritsw应助mmyhn采纳,获得10
2分钟前
2分钟前
周周粥完成签到 ,获得积分10
2分钟前
春天的粥完成签到 ,获得积分10
2分钟前
科研通AI5应助寒冷苗条采纳,获得10
2分钟前
2分钟前
雪生在无人荒野完成签到,获得积分10
2分钟前
3分钟前
寒冷苗条发布了新的文献求助10
3分钟前
3分钟前
3分钟前
陈艺平关注了科研通微信公众号
3分钟前
一行白鹭发布了新的文献求助10
3分钟前
寒冷苗条完成签到,获得积分10
3分钟前
所所应助一行白鹭采纳,获得10
3分钟前
陈艺平发布了新的文献求助10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510910
关于积分的说明 11155555
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214