亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning

随机森林 计算机科学 机器学习 人工智能 回归 决策树 数据挖掘 叶面积指数 统计 数学 生态学 生物
作者
Rasmus Houborg,Matthew F. McCabe
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:135: 173-188 被引量:182
标识
DOI:10.1016/j.isprsjprs.2017.10.004
摘要

With an increasing volume and dimensionality of Earth observation data, enhanced integration of machine-learning methodologies is needed to effectively analyze and utilize these information rich datasets. In machine-learning, a training dataset is required to establish explicit associations between a suite of explanatory ‘predictor’ variables and the target property. The specifics of this learning process can significantly influence model validity and portability, with a higher generalization level expected with an increasing number of observable conditions being reflected in the training dataset. Here we propose a hybrid training approach for leaf area index (LAI) estimation, which harnesses synergistic attributes of scattered in-situ measurements and systematically distributed physically based model inversion results to enhance the information content and spatial representativeness of the training data. To do this, a complimentary training dataset of independent LAI was derived from a regularized model inversion of RapidEye surface reflectances and subsequently used to guide the development of LAI regression models via Cubist and random forests (RF) decision tree methods. The application of the hybrid training approach to a broad set of Landsat 8 vegetation index (VI) predictor variables resulted in significantly improved LAI prediction accuracies and spatial consistencies, relative to results relying on in-situ measurements alone for model training. In comparing the prediction capacity and portability of the two machine-learning algorithms, a pair of relatively simple multi-variate regression models established by Cubist performed best, with an overall relative mean absolute deviation (rMAD) of ∼11%, determined based on a stringent scene-specific cross-validation approach. In comparison, the portability of RF regression models was less effective (i.e., an overall rMAD of ∼15%), which was attributed partly to model saturation at high LAI in association with inherent extrapolation and transferability limitations. Explanatory VIs formed from bands in the near-infrared (NIR) and shortwave infrared domains (e.g., NDWI) were associated with the highest predictive ability, whereas Cubist models relying entirely on VIs based on NIR and red band combinations (e.g., NDVI) were associated with comparatively high uncertainties (i.e., rMAD ∼ 21%). The most transferable and best performing models were based on combinations of several predictor variables, which included both NDWI- and NDVI-like variables. In this process, prior screening of input VIs based on an assessment of variable relevance served as an effective mechanism for optimizing prediction accuracies from both Cubist and RF. While this study demonstrated benefit in combining data mining operations with physically based constraints via a hybrid training approach, the concept of transferability and portability warrants further investigations in order to realize the full potential of emerging machine-learning techniques for regression purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李剑鸿发布了新的文献求助400
刚刚
Mercury完成签到,获得积分10
1秒前
想不出来完成签到 ,获得积分10
2秒前
7秒前
爱科研的小周完成签到 ,获得积分10
9秒前
精明元霜应助klbzw03采纳,获得10
25秒前
qwer完成签到,获得积分20
27秒前
Jasper应助耳东采纳,获得10
29秒前
35秒前
36秒前
36秒前
lwk发布了新的文献求助10
40秒前
qwer发布了新的文献求助10
41秒前
Shawn_54完成签到,获得积分10
41秒前
41秒前
腼腆的无颜关注了科研通微信公众号
43秒前
44秒前
47秒前
47秒前
调皮千兰发布了新的文献求助10
48秒前
lwk完成签到,获得积分10
50秒前
51秒前
52秒前
调皮千兰完成签到,获得积分10
54秒前
共享精神应助科研通管家采纳,获得30
56秒前
小小康康发布了新的文献求助10
57秒前
优秀冰真完成签到,获得积分10
1分钟前
1分钟前
1分钟前
七十二莳发布了新的文献求助10
1分钟前
杳鸢完成签到,获得积分10
1分钟前
wanci应助七十二莳采纳,获得10
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zhao完成签到 ,获得积分10
1分钟前
越来越好完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798001
关于积分的说明 7826426
捐赠科研通 2454508
什么是DOI,文献DOI怎么找? 1306308
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522