癌症
转移
癌症研究
生物
Wnt信号通路
癌细胞
表观遗传学
细胞生长
DNA甲基化
肝癌
基因
遗传学
基因表达
作者
Barbara Stefańska,David Cheishvili,Matthew Suderman,Ani Arakelian,Jian Huang,Michael Hallett,Ze‐Guang Han,Mamun Al‐Mahtab,Sheikh Mohammad Fazle Akbar,Wasif Ali Khan,Rubhana Raqib,Imrana Tanvir,Haseeb Ahmed Khan,Shafaat A. Rabbani,Moshe Szyf
标识
DOI:10.1158/1078-0432.ccr-13-0283
摘要
We utilized whole-genome mapping of promoters that are activated by DNA hypomethylation in hepatocellular carcinoma (HCC) clinical samples to shortlist novel targets for anticancer therapeutics. We provide a proof of principle of this approach by testing six genes short-listed in our screen for their essential role in cancer growth and invasiveness.We used siRNA- or shRNA-mediated depletion to determine whether inhibition of these genes would reduce human tumor xenograft growth in mice as well as cell viability, anchorage-independent growth, invasive capacities, and state of activity of nodal signaling pathways in liver, breast, and bladder cancer cell lines.Depletion of EXOSC4, RNMT, SENP6, WBSCR22, RASAL2, and NENF effectively and specifically inhibits cancer cell growth and cell invasive capacities in different types of cancer, but, remarkably, there is no effect on normal cell growth, suggesting a ubiquitous causal role for these genes in driving cancer growth and metastasis. Depletion of RASAL2 and NENF in vitro reduces their growth as explants in vivo in mice. RASAL2 and NENF depletion interferes with AKT, WNT, and MAPK signaling pathways as well as regulation of epigenetic proteins that were previously demonstrated to drive cancer growth and metastasis.Our results prove that genes that are hypomethylated and induced in tumors are candidate targets for anticancer therapeutics in multiple cancer cell types. Because these genes are particularly activated in cancer, they constitute a group of targets for specific pharmacologic inhibitors of cancer and cancer metastasis. Clin Cancer Res; 20(12); 3118-32. ©2014 AACR.
科研通智能强力驱动
Strongly Powered by AbleSci AI