Backward erosion piping: Initiation and progression

管道 堤坝 腐蚀 内腐蚀 大洪水 岩土工程 地质学 环境科学 地貌学 岩石学 环境工程 地理 考古
作者
Vera van Beek
标识
DOI:10.4233/uuid:4b3ff166-b487-4f55-a710-2a2e00307311
摘要

Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes and dams where sandy layers are covered by a cohesive layer. Sand boils can indicate that backward erosion is present and they are observed regularly during high water and floods. Although failure resulting from backward erosion piping is not common, several dike failures in the US, China and the Netherlands have been attributed to this mechanism. Given the impact that climate change is expected to have, prediction models for backward erosion piping are becoming increasingly important in flood-risk assessment. The prediction models available until now, such as Bligh’s rule and the Sellmeijer model, were validated in the research programme ‘Strength and loads on flood defence structures’ (SBW: Sterkte en Belastingen Waterkeringen) in the period 2008-2010 using small-, medium- and large-scale experiments. These experiments showed that an empirical adjustment of the Sellmeijer model was required to take the effect of the sand type into account and that validation was not possible for loose sand types because the erosion mode is different in those conditions. However, the absence of a theoretical basis makes this proposed empirical adjustment unsatisfactory because it lacks robustness. The main question addressed by this dissertation is how to explain and predict the pipe-forming erosion processes in uniform sands. A review of the literature, in conjunction with additional experiments, showed that the critical head in pipe formation leading to dike failure depends on either pipe initiation or pipe progression. In some experiments, the critical head for pipe initiation exceeds that of pipe progression and equilibrium is therefore prevented. The experiments in which no equilibrium was observed allowed for the development of a model for pipe initiation. It was possible to relate the observed differences in critical gradient caused by scale, sand type and configuration to the fluidisation of sand very close to the exit, where the local gradients are high. In the field, pipe progression is likely to determine the critical gradient. The Sellmeijer model predicts the progression of the pipe on the basis of the equilibrium of particles on the bottom of the pipe. The literature, and an analysis of the pipe width, depth, gradient and erosion process in experiments, indicate that pipe progression relies on two processes: primary erosion, which causes the removal of particles at the pipe tip, and secondary erosion, which causes the erosion of the pipe walls and bottom. Although the Sellmeijer model does not include primary erosion, it does function well for sand layers with a 2D exit configuration in which there is no variation in the grain size along the pipe path. The adaptation of the Sellmeijer model that was found necessary to account for the effect of sand type can be replaced by using the original model in combination with a variable bedding angle based on incipient motion experiments from the literature. The Sellmeijer model does not predict the critical gradient well for 3D configurations such as flow towards a single point, or for heterogeneous soils. Variations in the grain size in the pipe path were found to result in significantly higher critical gradients than expected, whereas a strong concentration of the flow towards the exit led to a fall in the critical gradient. 3D numerical calculations and the inclusion of primary erosion in the Sellmeijer model are needed to predict piping under these conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南枝焙雪完成签到 ,获得积分10
4秒前
zhang完成签到 ,获得积分10
11秒前
藏锋完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
kingfly2010完成签到,获得积分10
15秒前
18秒前
傻瓜完成签到 ,获得积分10
18秒前
荣幸完成签到 ,获得积分10
23秒前
吱吱发布了新的文献求助10
24秒前
1255475177完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
吊炸天完成签到 ,获得积分10
25秒前
Jason完成签到 ,获得积分10
30秒前
Owen应助吱吱采纳,获得10
33秒前
Nothing完成签到 ,获得积分10
34秒前
周周周完成签到 ,获得积分10
36秒前
刻苦的新烟完成签到 ,获得积分0
36秒前
量子星尘发布了新的文献求助10
37秒前
纸条条完成签到 ,获得积分10
38秒前
45秒前
Cell完成签到 ,获得积分10
49秒前
梦里的大子刊完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
52秒前
大方的曼容完成签到 ,获得积分10
53秒前
spring完成签到 ,获得积分10
54秒前
58秒前
无聊的烷烃完成签到,获得积分10
58秒前
不是个麻瓜完成签到,获得积分20
59秒前
SDS完成签到 ,获得积分10
1分钟前
愿我如星君如月完成签到 ,获得积分10
1分钟前
貔貅完成签到 ,获得积分10
1分钟前
1分钟前
笑点低的铁身完成签到 ,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
1分钟前
不会学习的小郭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小蘑菇应助不是个麻瓜采纳,获得10
1分钟前
勤恳的语蝶完成签到 ,获得积分10
1分钟前
滴滴完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664721
求助须知:如何正确求助?哪些是违规求助? 4868293
关于积分的说明 15108389
捐赠科研通 4823414
什么是DOI,文献DOI怎么找? 2582282
邀请新用户注册赠送积分活动 1536330
关于科研通互助平台的介绍 1494765