亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human-level control through deep reinforcement learning

强化学习 人工智能 计算机科学 多样性(控制论) 控制(管理) 感知 人机交互 深度学习 机器学习 神经科学 生物
作者
Volodymyr Mnih,Koray Kavukcuoglu,David Silver,Andrei A. Rusu,Joel Veness,Marc G. Bellemare,Alex Graves,Martin Riedmiller,Andreas Fidjeland,Georg Ostrovski,Stig Petersen,Charles Beattie,Amir Sadik,Ioannis Antonoglou,Helen King,Dharshan Kumaran,Daan Wierstra,Shane Legg,Demis Hassabis
出处
期刊:Nature [Nature Portfolio]
卷期号:518 (7540): 529-533 被引量:25403
标识
DOI:10.1038/nature14236
摘要

The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emily发布了新的文献求助10
10秒前
13秒前
reeedirect发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
烟花应助杰杰小杰采纳,获得10
21秒前
Emily发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
26秒前
传奇3应助lxl采纳,获得10
27秒前
nandiaozhimu完成签到,获得积分10
29秒前
啊啊的发布了新的文献求助10
30秒前
30秒前
小二郎应助Emily采纳,获得10
31秒前
小人物的坚持完成签到 ,获得积分10
34秒前
38秒前
量子星尘发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
53秒前
生信精准科研完成签到,获得积分10
56秒前
爱听歌笑寒完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
maple关注了科研通微信公众号
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Emily发布了新的文献求助10
1分钟前
mingjie发布了新的文献求助10
1分钟前
科研通AI5应助QSNI采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xiemeili完成签到 ,获得积分10
1分钟前
mingjie完成签到,获得积分10
1分钟前
maple发布了新的文献求助10
1分钟前
1分钟前
Ava应助wjj采纳,获得10
1分钟前
Emily发布了新的文献求助10
1分钟前
QSNI发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
大模型应助Emily采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743819
捐赠科研通 2931727
什么是DOI,文献DOI怎么找? 1605190
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734465