清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data

人工神经网络 计算机科学 变量(数学) 相似性(几何) 人工智能 机器学习 黑匣子 原始数据 数据挖掘 生态学 数学 数学分析 生物 图像(数学) 程序设计语言
作者
Julian D. Olden,Michael K. Joy,Russell G. Death
出处
期刊:Ecological Modelling [Elsevier]
卷期号:178 (3-4): 389-397 被引量:846
标识
DOI:10.1016/j.ecolmodel.2004.03.013
摘要

Artificial neural networks (ANNs) are receiving greater attention in the ecological sciences as a powerful statistical modeling technique; however, they have also been labeled a “black box” because they are believed to provide little explanatory insight into the contributions of the independent variables in the prediction process. A recent paper published in Ecological Modelling [Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecol. Model. 160 (2003) 249–264] addressed this concern by providing a comprehensive comparison of eight different methodologies for estimating variable importance in neural networks that are commonly used in ecology. Unfortunately, comparisons of the different methodologies were based on an empirical dataset, which precludes the ability to establish generalizations regarding the true accuracy and precision of the different approaches because the true importance of the variables is unknown. Here, we provide a more appropriate comparison of the different methodologies by using Monte Carlo simulations with data exhibiting defined (and consequently known) numeric relationships. Our results show that a Connection Weight Approach that uses raw input-hidden and hidden-output connection weights in the neural network provides the best methodology for accurately quantifying variable importance and should be favored over the other approaches commonly used in the ecological literature. Average similarity between true and estimated ranked variable importance using this approach was 0.92, whereas, similarity coefficients ranged between 0.28 and 0.74 for the other approaches. Furthermore, the Connection Weight Approach was the only method that consistently identified the correct ranked importance of all predictor variables, whereas, the other methods either only identified the first few important variables in the network or no variables at all. The most notably result was that Garson’s Algorithm was the poorest performing approach, yet is the most commonly used in the ecological literature. In conclusion, this study provides a robust comparison of different methodologies for assessing variable importance in neural networks that can be generalized to other data and from which valid recommendations can be made for future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
herpes完成签到 ,获得积分10
46秒前
chichenglin完成签到 ,获得积分0
59秒前
gmc完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Yuki完成签到 ,获得积分10
1分钟前
1分钟前
朱光辉完成签到,获得积分10
1分钟前
22完成签到 ,获得积分10
1分钟前
Moona发布了新的文献求助10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
ysss0831完成签到,获得积分10
2分钟前
ysss0831发布了新的文献求助10
2分钟前
2分钟前
www发布了新的文献求助10
2分钟前
嘻嘻完成签到,获得积分10
2分钟前
坚定盈完成签到,获得积分20
2分钟前
坚定盈发布了新的文献求助10
3分钟前
3分钟前
3分钟前
滕祥应助科研通管家采纳,获得30
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
刘丰完成签到 ,获得积分10
3分钟前
3分钟前
lilylwy完成签到 ,获得积分0
4分钟前
小西完成签到 ,获得积分0
4分钟前
bji完成签到,获得积分10
4分钟前
4分钟前
4分钟前
x夏天完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
KINGAZX完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715212
求助须知:如何正确求助?哪些是违规求助? 5231886
关于积分的说明 15274181
捐赠科研通 4866216
什么是DOI,文献DOI怎么找? 2612774
邀请新用户注册赠送积分活动 1562944
关于科研通互助平台的介绍 1520334