An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data

人工神经网络 计算机科学 变量(数学) 相似性(几何) 人工智能 机器学习 黑匣子 原始数据 数据挖掘 生态学 数学 生物 图像(数学) 数学分析 程序设计语言
作者
Julian D. Olden,Michael K. Joy,Russell G. Death
出处
期刊:Ecological Modelling [Elsevier]
卷期号:178 (3-4): 389-397 被引量:846
标识
DOI:10.1016/j.ecolmodel.2004.03.013
摘要

Artificial neural networks (ANNs) are receiving greater attention in the ecological sciences as a powerful statistical modeling technique; however, they have also been labeled a “black box” because they are believed to provide little explanatory insight into the contributions of the independent variables in the prediction process. A recent paper published in Ecological Modelling [Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecol. Model. 160 (2003) 249–264] addressed this concern by providing a comprehensive comparison of eight different methodologies for estimating variable importance in neural networks that are commonly used in ecology. Unfortunately, comparisons of the different methodologies were based on an empirical dataset, which precludes the ability to establish generalizations regarding the true accuracy and precision of the different approaches because the true importance of the variables is unknown. Here, we provide a more appropriate comparison of the different methodologies by using Monte Carlo simulations with data exhibiting defined (and consequently known) numeric relationships. Our results show that a Connection Weight Approach that uses raw input-hidden and hidden-output connection weights in the neural network provides the best methodology for accurately quantifying variable importance and should be favored over the other approaches commonly used in the ecological literature. Average similarity between true and estimated ranked variable importance using this approach was 0.92, whereas, similarity coefficients ranged between 0.28 and 0.74 for the other approaches. Furthermore, the Connection Weight Approach was the only method that consistently identified the correct ranked importance of all predictor variables, whereas, the other methods either only identified the first few important variables in the network or no variables at all. The most notably result was that Garson’s Algorithm was the poorest performing approach, yet is the most commonly used in the ecological literature. In conclusion, this study provides a robust comparison of different methodologies for assessing variable importance in neural networks that can be generalized to other data and from which valid recommendations can be made for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
害羞的妙海完成签到,获得积分10
3秒前
3秒前
lorry完成签到,获得积分10
4秒前
4秒前
4秒前
草花丝带完成签到,获得积分10
4秒前
科研通AI2S应助mbf采纳,获得10
4秒前
whutzxy完成签到,获得积分10
5秒前
负责灵萱发布了新的文献求助10
6秒前
6秒前
黄健伟发布了新的文献求助10
6秒前
半岛发布了新的文献求助10
7秒前
8秒前
lorry发布了新的文献求助10
8秒前
Orange应助罗杰采纳,获得10
8秒前
所所应助草花丝带采纳,获得10
8秒前
biglxq完成签到,获得积分10
8秒前
8秒前
ZXH完成签到,获得积分10
8秒前
科研通AI2S应助聪明紫山采纳,获得10
9秒前
靳冉完成签到,获得积分20
9秒前
9秒前
罗静完成签到,获得积分10
9秒前
小马甲应助小纯洁采纳,获得10
10秒前
10秒前
wjadejing发布了新的文献求助10
10秒前
Aaa_12012发布了新的文献求助30
11秒前
酷波er应助CYT采纳,获得10
11秒前
NexusExplorer应助喻萍采纳,获得10
11秒前
yl完成签到,获得积分10
12秒前
von发布了新的文献求助10
12秒前
听寒发布了新的文献求助10
12秒前
柚子发布了新的文献求助10
12秒前
13秒前
cocolu应助你好采纳,获得10
14秒前
琳毓完成签到,获得积分10
14秒前
DrW发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286