An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data

人工神经网络 计算机科学 变量(数学) 相似性(几何) 人工智能 机器学习 黑匣子 原始数据 数据挖掘 生态学 数学 生物 图像(数学) 数学分析 程序设计语言
作者
Julian D. Olden,Michael K. Joy,Russell G. Death
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:178 (3-4): 389-397 被引量:846
标识
DOI:10.1016/j.ecolmodel.2004.03.013
摘要

Artificial neural networks (ANNs) are receiving greater attention in the ecological sciences as a powerful statistical modeling technique; however, they have also been labeled a “black box” because they are believed to provide little explanatory insight into the contributions of the independent variables in the prediction process. A recent paper published in Ecological Modelling [Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecol. Model. 160 (2003) 249–264] addressed this concern by providing a comprehensive comparison of eight different methodologies for estimating variable importance in neural networks that are commonly used in ecology. Unfortunately, comparisons of the different methodologies were based on an empirical dataset, which precludes the ability to establish generalizations regarding the true accuracy and precision of the different approaches because the true importance of the variables is unknown. Here, we provide a more appropriate comparison of the different methodologies by using Monte Carlo simulations with data exhibiting defined (and consequently known) numeric relationships. Our results show that a Connection Weight Approach that uses raw input-hidden and hidden-output connection weights in the neural network provides the best methodology for accurately quantifying variable importance and should be favored over the other approaches commonly used in the ecological literature. Average similarity between true and estimated ranked variable importance using this approach was 0.92, whereas, similarity coefficients ranged between 0.28 and 0.74 for the other approaches. Furthermore, the Connection Weight Approach was the only method that consistently identified the correct ranked importance of all predictor variables, whereas, the other methods either only identified the first few important variables in the network or no variables at all. The most notably result was that Garson’s Algorithm was the poorest performing approach, yet is the most commonly used in the ecological literature. In conclusion, this study provides a robust comparison of different methodologies for assessing variable importance in neural networks that can be generalized to other data and from which valid recommendations can be made for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乙醇完成签到 ,获得积分10
1秒前
1秒前
turbohero发布了新的文献求助10
1秒前
小朋友王致和完成签到,获得积分10
1秒前
在水一方应助幸福的善若采纳,获得10
2秒前
jaypark完成签到,获得积分20
2秒前
yang完成签到,获得积分10
2秒前
超级的鞅完成签到,获得积分10
3秒前
3秒前
3秒前
Mydddg发布了新的文献求助10
4秒前
SYLH应助Jane采纳,获得10
5秒前
可可发布了新的文献求助10
5秒前
5秒前
5秒前
纳斯达克发布了新的文献求助20
5秒前
曾小莹完成签到,获得积分10
6秒前
6秒前
8秒前
yookia应助Anna采纳,获得10
8秒前
龙科发布了新的文献求助10
8秒前
9秒前
9秒前
chengli发布了新的文献求助10
10秒前
11秒前
市不辣发布了新的文献求助10
11秒前
12秒前
xin发布了新的文献求助10
12秒前
英姑应助咩咩兔采纳,获得10
12秒前
大个应助法芙娜采纳,获得10
12秒前
晓晓发布了新的文献求助10
14秒前
14秒前
Mydddg完成签到,获得积分10
15秒前
任全强发布了新的文献求助10
15秒前
摆烂研究牲完成签到,获得积分10
15秒前
16秒前
xiaoshuai发布了新的文献求助10
19秒前
充电宝应助Jane采纳,获得10
19秒前
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352