亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data

人工神经网络 计算机科学 变量(数学) 相似性(几何) 人工智能 机器学习 黑匣子 原始数据 数据挖掘 生态学 数学 数学分析 生物 图像(数学) 程序设计语言
作者
Julian D. Olden,Michael K. Joy,Russell G. Death
出处
期刊:Ecological Modelling [Elsevier]
卷期号:178 (3-4): 389-397 被引量:846
标识
DOI:10.1016/j.ecolmodel.2004.03.013
摘要

Artificial neural networks (ANNs) are receiving greater attention in the ecological sciences as a powerful statistical modeling technique; however, they have also been labeled a “black box” because they are believed to provide little explanatory insight into the contributions of the independent variables in the prediction process. A recent paper published in Ecological Modelling [Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecol. Model. 160 (2003) 249–264] addressed this concern by providing a comprehensive comparison of eight different methodologies for estimating variable importance in neural networks that are commonly used in ecology. Unfortunately, comparisons of the different methodologies were based on an empirical dataset, which precludes the ability to establish generalizations regarding the true accuracy and precision of the different approaches because the true importance of the variables is unknown. Here, we provide a more appropriate comparison of the different methodologies by using Monte Carlo simulations with data exhibiting defined (and consequently known) numeric relationships. Our results show that a Connection Weight Approach that uses raw input-hidden and hidden-output connection weights in the neural network provides the best methodology for accurately quantifying variable importance and should be favored over the other approaches commonly used in the ecological literature. Average similarity between true and estimated ranked variable importance using this approach was 0.92, whereas, similarity coefficients ranged between 0.28 and 0.74 for the other approaches. Furthermore, the Connection Weight Approach was the only method that consistently identified the correct ranked importance of all predictor variables, whereas, the other methods either only identified the first few important variables in the network or no variables at all. The most notably result was that Garson’s Algorithm was the poorest performing approach, yet is the most commonly used in the ecological literature. In conclusion, this study provides a robust comparison of different methodologies for assessing variable importance in neural networks that can be generalized to other data and from which valid recommendations can be made for future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk_1315完成签到,获得积分0
1秒前
3秒前
食指发布了新的文献求助10
3秒前
蘑蘑菇菇完成签到,获得积分10
4秒前
Jack完成签到 ,获得积分10
6秒前
8秒前
CCC发布了新的文献求助10
9秒前
吴彦祖完成签到,获得积分10
12秒前
洞两发布了新的文献求助10
12秒前
dream完成签到 ,获得积分10
13秒前
Grendyu发布了新的文献求助30
13秒前
24秒前
叫我小橙完成签到,获得积分10
26秒前
星辰大海应助Atopos采纳,获得10
32秒前
无情的踏歌应助清脆靳采纳,获得50
33秒前
ivy发布了新的文献求助10
38秒前
李桂芳完成签到,获得积分10
44秒前
食指完成签到,获得积分10
45秒前
mmyhn发布了新的文献求助10
48秒前
乐观完成签到 ,获得积分10
50秒前
Grendyu完成签到,获得积分10
52秒前
果小镁发布了新的文献求助10
54秒前
粽子完成签到,获得积分10
54秒前
隐形不凡完成签到,获得积分10
55秒前
情怀应助清脆靳采纳,获得10
1分钟前
1分钟前
丘比特应助lisyan采纳,获得10
1分钟前
jim完成签到 ,获得积分10
1分钟前
九日橙完成签到 ,获得积分10
1分钟前
lcj1014发布了新的文献求助10
1分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
维奈克拉应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
维奈克拉应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
焰古完成签到 ,获得积分10
1分钟前
科研通AI6应助lcj1014采纳,获得10
1分钟前
三号技师完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561183
求助须知:如何正确求助?哪些是违规求助? 4646364
关于积分的说明 14678412
捐赠科研通 4587646
什么是DOI,文献DOI怎么找? 2517193
邀请新用户注册赠送积分活动 1490462
关于科研通互助平台的介绍 1461344