Synthesis of Li7La3(Zr2−X, NbX)O12 (X = 0 – 1) at Low Temperatures Using a Sol-Gel Process

离子电导率 电解质 材料科学 无机化学 电导率 硝酸锂 锂(药物) 热稳定性 快离子导体 陶瓷 离子键合 化学 物理化学 离子 冶金 有机化学 内分泌学 医学 电极
作者
Nataly Carolina Rosero‐Navarro,Taira Yamashita,Mikio Higuchi,Kiyoharu Tadanaga
出处
期刊:Meeting abstracts 卷期号:MA2014-02 (5): 299-299
标识
DOI:10.1149/ma2014-02/5/299
摘要

The ceramic solid-electrolyte Li 7 La 3 Zr 2 O 12 (LLZO) with a garnet crystal structure has developed as a promising solid electrolyte material. Positive properties: high ionic conductivity (4x10 -4 Scm -1 at 25ºC) [1], electrochemical stability with Li metal, and thermal and chemical stability. However, the conductivity of this material remains about two orders of magnitude lower than that of a common liquid organic electrolyte. The main disadvantage is related with the loss of lithium produced during the sintering process up to 1200ºC to obtain the cubic structure, responsible of produce the high conductivity. From this point of view, using a solution process for the development of this kind of electrolyte materials is a very attractive alternative in order to obtain lower thermal treatment. In this work, we explore the use of sol-gel process to obtain Lithium garnet-type oxides Li 7 La 3 (Zr 2−X , Nb X )O 12 (LLZNbO, X=0–1) at low temperatures. The partial substitution of Nb in the typical LLZO improves the ion conductivity based in their dependence on the lattice parameter [2]. The sol-gel synthesis was developed using lithium nitrate, lanthanum nitrate, zirconium butoxide and niobium ethoxide as precursors. Ethylacetoacetate was used as a stabilizing agent for the alkoxides and ethanol as solvent. Firstly, the lithium and lanthanum salts were dissolved in ethanol. Separately, the zirconium and niobium alkoxides were reacted with stabilizing agent. The molar relation between Zr/Nb and stabilizing agent was adjusted in order to prevent the fast reaction with the Li/La solution. After 1 hour, the solutions were mixed and then, the final solution was stirred at 25ºC during 1 hour until a white gel was obtained. The gel was dried at 80ºC for 24 hours. Further, the powder was ground and calcined at 700ºC for 5 hours. The calcined powders were attrition milled with 4 mm diameter ZrO 2 balls in a toluene media at 300 RPM for 6 hours. The powder were pressed into pellets and sintered at 900ºC for 10 hours. The powders obtained after calcination showed wide particle size distribution between few microns until ~10µm, and some agglomerates were observed with sizes of ~20µm. The incorporation of niobium in the pristine LLZO produces bigger particles with regular shape; the effect was more evident with higher concentration of niobium, as shown in Figure 1. Pellet using unmilled powder produce materials with low relative density, 45% and 55% for LLZO and LLZNbO, respectively. The reduction of the particle size using ZrO 2 ball milling resulted in an increase of the relative density upto 75% for Li 7 La 3 (Zr 1.75 , Nb 0.25 )O 12 . Figure 2A shows the small and regular particle shape obtained for the LLZO after milling (compare Fig.1A). However, the individual particle observed after sintering is an evidence of lack of pellet densification. Large particles and open pores were observed in the surface view, Figure 3A. On the other hand, the incorporation of Nb in the garnet crystal structure produces the binding of the particles, Figure 2B-D. Figure 2B displays the good sintering of the sample Li 7 La 3 (Zr 1.75 , Nb 0.25 )O 12 with low presence of pores. Sintering is also verified on the surface of the pellet, Figure 3B, where the presence of individual particles was minimum. Higher Nb doped concentration presented low relative density (~60%). XRD patterns of undoped LLZO displayed tetragonal phase, while all LLZNbO compositions showed cubic phase and a small peak assigned to La 2 Zr 2 O 7 was observed in Li 7 La 3 (Zr 1.75 , Nb 0.25 )O 12 . The Lattice parameter varied from 12.9463Å to 12.9203Å with the increase of Nb concentration (12.9682Å for LLZO sintered at 1230ºC[1]). The conductivity obtained was in the order of 10 -6 to 10 -7 S/cm at 50ºC. [1] R.Murugan, V.Thangadurai, W.Weppner, Angew. Chem. 2007,119, 7925– 7928 [2] H.Imagawa, S.Ohta, Y.Kihira, T.Asaoka, Solid.State.Ionics 2013, http://dx.doi.org/10.1016/j.ssi.2013.10.059

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sheart发布了新的文献求助10
刚刚
非哲发布了新的文献求助10
刚刚
翁怜晴发布了新的文献求助10
1秒前
yuan完成签到,获得积分10
1秒前
ldy发布了新的文献求助10
1秒前
田様应助Auh采纳,获得10
1秒前
2秒前
2秒前
搜集达人应助JABBA采纳,获得10
2秒前
宁宁完成签到,获得积分10
2秒前
bkagyin应助qwe采纳,获得10
2秒前
liu发布了新的文献求助10
2秒前
XiaoLiu应助Lee采纳,获得10
3秒前
3秒前
ydx发布了新的文献求助10
4秒前
4秒前
Akim应助yu采纳,获得10
4秒前
4秒前
5秒前
呆萌的傲旋关注了科研通微信公众号
5秒前
5秒前
小蘑菇应助点点采纳,获得10
7秒前
7秒前
7秒前
8秒前
XIA发布了新的文献求助20
8秒前
8秒前
英俊柠檬发布了新的文献求助10
8秒前
8秒前
lyy完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
慕青应助echoyao采纳,获得10
10秒前
lcx发布了新的文献求助10
11秒前
Akim应助qing1245采纳,获得10
11秒前
大个应助轻松不二采纳,获得10
11秒前
ccc发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562