Synthesis of Li7La3(Zr2−X, NbX)O12 (X = 0 – 1) at Low Temperatures Using a Sol-Gel Process

离子电导率 电解质 材料科学 无机化学 电导率 硝酸锂 锂(药物) 热稳定性 快离子导体 陶瓷 离子键合 化学 物理化学 离子 冶金 有机化学 医学 电极 内分泌学
作者
Nataly Carolina Rosero‐Navarro,Taira Yamashita,Mikio Higuchi,Kiyoharu Tadanaga
出处
期刊:Meeting abstracts 卷期号:MA2014-02 (5): 299-299
标识
DOI:10.1149/ma2014-02/5/299
摘要

The ceramic solid-electrolyte Li 7 La 3 Zr 2 O 12 (LLZO) with a garnet crystal structure has developed as a promising solid electrolyte material. Positive properties: high ionic conductivity (4x10 -4 Scm -1 at 25ºC) [1], electrochemical stability with Li metal, and thermal and chemical stability. However, the conductivity of this material remains about two orders of magnitude lower than that of a common liquid organic electrolyte. The main disadvantage is related with the loss of lithium produced during the sintering process up to 1200ºC to obtain the cubic structure, responsible of produce the high conductivity. From this point of view, using a solution process for the development of this kind of electrolyte materials is a very attractive alternative in order to obtain lower thermal treatment. In this work, we explore the use of sol-gel process to obtain Lithium garnet-type oxides Li 7 La 3 (Zr 2−X , Nb X )O 12 (LLZNbO, X=0–1) at low temperatures. The partial substitution of Nb in the typical LLZO improves the ion conductivity based in their dependence on the lattice parameter [2]. The sol-gel synthesis was developed using lithium nitrate, lanthanum nitrate, zirconium butoxide and niobium ethoxide as precursors. Ethylacetoacetate was used as a stabilizing agent for the alkoxides and ethanol as solvent. Firstly, the lithium and lanthanum salts were dissolved in ethanol. Separately, the zirconium and niobium alkoxides were reacted with stabilizing agent. The molar relation between Zr/Nb and stabilizing agent was adjusted in order to prevent the fast reaction with the Li/La solution. After 1 hour, the solutions were mixed and then, the final solution was stirred at 25ºC during 1 hour until a white gel was obtained. The gel was dried at 80ºC for 24 hours. Further, the powder was ground and calcined at 700ºC for 5 hours. The calcined powders were attrition milled with 4 mm diameter ZrO 2 balls in a toluene media at 300 RPM for 6 hours. The powder were pressed into pellets and sintered at 900ºC for 10 hours. The powders obtained after calcination showed wide particle size distribution between few microns until ~10µm, and some agglomerates were observed with sizes of ~20µm. The incorporation of niobium in the pristine LLZO produces bigger particles with regular shape; the effect was more evident with higher concentration of niobium, as shown in Figure 1. Pellet using unmilled powder produce materials with low relative density, 45% and 55% for LLZO and LLZNbO, respectively. The reduction of the particle size using ZrO 2 ball milling resulted in an increase of the relative density upto 75% for Li 7 La 3 (Zr 1.75 , Nb 0.25 )O 12 . Figure 2A shows the small and regular particle shape obtained for the LLZO after milling (compare Fig.1A). However, the individual particle observed after sintering is an evidence of lack of pellet densification. Large particles and open pores were observed in the surface view, Figure 3A. On the other hand, the incorporation of Nb in the garnet crystal structure produces the binding of the particles, Figure 2B-D. Figure 2B displays the good sintering of the sample Li 7 La 3 (Zr 1.75 , Nb 0.25 )O 12 with low presence of pores. Sintering is also verified on the surface of the pellet, Figure 3B, where the presence of individual particles was minimum. Higher Nb doped concentration presented low relative density (~60%). XRD patterns of undoped LLZO displayed tetragonal phase, while all LLZNbO compositions showed cubic phase and a small peak assigned to La 2 Zr 2 O 7 was observed in Li 7 La 3 (Zr 1.75 , Nb 0.25 )O 12 . The Lattice parameter varied from 12.9463Å to 12.9203Å with the increase of Nb concentration (12.9682Å for LLZO sintered at 1230ºC[1]). The conductivity obtained was in the order of 10 -6 to 10 -7 S/cm at 50ºC. [1] R.Murugan, V.Thangadurai, W.Weppner, Angew. Chem. 2007,119, 7925– 7928 [2] H.Imagawa, S.Ohta, Y.Kihira, T.Asaoka, Solid.State.Ionics 2013, http://dx.doi.org/10.1016/j.ssi.2013.10.059

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛黄完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
8秒前
catherine完成签到,获得积分10
14秒前
physicalproblem完成签到,获得积分10
15秒前
21秒前
ChatGPT完成签到,获得积分10
22秒前
GPTea应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得50
25秒前
25秒前
GPTea应助科研通管家采纳,获得100
25秒前
汉堡包应助科研通管家采纳,获得150
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得50
25秒前
25秒前
NexusExplorer应助科研通管家采纳,获得50
25秒前
27秒前
zzt发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助150
33秒前
aowulan完成签到 ,获得积分10
34秒前
壮观的谷冬完成签到 ,获得积分0
35秒前
sonicker完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助150
43秒前
宇文雨文完成签到 ,获得积分10
49秒前
xiaofeixia完成签到 ,获得积分10
52秒前
迅速的宛海完成签到 ,获得积分10
1分钟前
1分钟前
熊二完成签到,获得积分10
1分钟前
firefox完成签到,获得积分10
1分钟前
青黛完成签到 ,获得积分10
1分钟前
firefox发布了新的文献求助10
1分钟前
画龙点睛完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
nano完成签到 ,获得积分10
1分钟前
qinghe完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
万松辉完成签到,获得积分10
1分钟前
儒雅龙完成签到 ,获得积分10
1分钟前
张振宇完成签到 ,获得积分10
1分钟前
xyz完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910590
求助须知:如何正确求助?哪些是违规求助? 4186398
关于积分的说明 12999406
捐赠科研通 3953882
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186601
关于科研通互助平台的介绍 1093798