Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
受伤的依霜完成签到,获得积分20
刚刚
小王同学完成签到,获得积分10
刚刚
刚刚
lyreruin完成签到,获得积分10
刚刚
虚影完成签到,获得积分10
1秒前
林祥胜完成签到,获得积分10
1秒前
敏感代云完成签到,获得积分10
1秒前
1秒前
科研通AI5应助bbb采纳,获得10
1秒前
1秒前
瑾风阳完成签到,获得积分10
2秒前
琪哒发布了新的文献求助10
2秒前
225455完成签到,获得积分10
2秒前
2秒前
沉默发布了新的文献求助10
2秒前
爆米花应助英勇的面包采纳,获得10
2秒前
2秒前
Hover发布了新的文献求助10
2秒前
烟花应助jyyg采纳,获得10
3秒前
慕青应助Russula_Chu采纳,获得10
4秒前
隐形曼青应助梅哈采纳,获得10
4秒前
居正完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
xiaoran发布了新的文献求助10
4秒前
5秒前
机灵安白发布了新的文献求助10
5秒前
晨风韵雨完成签到,获得积分20
5秒前
夏侯初发布了新的文献求助10
6秒前
6秒前
淡定发布了新的文献求助30
6秒前
Iris发布了新的文献求助20
6秒前
小蘑菇应助敏感笑槐采纳,获得10
7秒前
完美世界应助敏感笑槐采纳,获得10
7秒前
方曦辉发布了新的文献求助10
7秒前
FKKKKSY应助敏感笑槐采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
科研通AI5应助敏感笑槐采纳,获得10
7秒前
JamesPei应助敏感笑槐采纳,获得10
7秒前
科研通AI6应助敏感笑槐采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426