Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾霭迷茫发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助50
刚刚
明亮安双完成签到,获得积分10
1秒前
饱满青完成签到 ,获得积分10
2秒前
3秒前
3秒前
星希完成签到 ,获得积分10
3秒前
苏锦霖发布了新的文献求助10
5秒前
CC完成签到,获得积分10
5秒前
6秒前
7秒前
CodeCraft应助韦灵珊采纳,获得10
7秒前
香蕉觅云应助萨达采纳,获得10
7秒前
9秒前
隐形曼青应助fanfan采纳,获得10
9秒前
9秒前
任性迎南完成签到,获得积分10
10秒前
11秒前
可爱的函函应助gwentea采纳,获得10
11秒前
别喝他的酒完成签到,获得积分10
12秒前
大力丹琴完成签到,获得积分10
12秒前
㊣㊣发布了新的文献求助10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得30
12秒前
浮游应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
13秒前
强砸完成签到,获得积分10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
13秒前
Bio应助科研通管家采纳,获得30
13秒前
sci_zt发布了新的文献求助10
13秒前
CipherSage应助科研通管家采纳,获得30
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
Hello应助无情干饭崽采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得30
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5140833
求助须知:如何正确求助?哪些是违规求助? 4339316
关于积分的说明 13515046
捐赠科研通 4178957
什么是DOI,文献DOI怎么找? 2291500
邀请新用户注册赠送积分活动 1292177
关于科研通互助平台的介绍 1234559