Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好发布了新的文献求助10
1秒前
Charles关注了科研通微信公众号
1秒前
糊涂塌客完成签到,获得积分10
1秒前
科研助手6应助郭晗采纳,获得10
2秒前
heyihao应助郭晗采纳,获得10
2秒前
大模型应助药毛儿采纳,获得10
3秒前
我不是阿良完成签到,获得积分20
3秒前
1351567822应助无限雨南采纳,获得10
3秒前
liujian发布了新的文献求助10
4秒前
小嘎完成签到 ,获得积分10
5秒前
科研通AI2S应助我不是阿良采纳,获得10
6秒前
CodeCraft应助魔幻诗兰采纳,获得10
7秒前
hongfangpan完成签到 ,获得积分10
7秒前
tramp应助出租耳朵采纳,获得10
7秒前
彩云追月完成签到 ,获得积分10
9秒前
无花果应助风清扬采纳,获得10
10秒前
Fan发布了新的文献求助10
13秒前
平常的紫蓝完成签到,获得积分10
14秒前
15秒前
15秒前
烟花应助111111采纳,获得10
17秒前
河马完成签到,获得积分10
17秒前
科研助手6应助张雯思采纳,获得10
18秒前
18秒前
药毛儿发布了新的文献求助10
20秒前
一洼清泉完成签到,获得积分10
21秒前
hiter完成签到,获得积分10
21秒前
YaoQi完成签到,获得积分10
21秒前
Jasper应助智慧爷爷采纳,获得10
21秒前
大青山发布了新的文献求助10
21秒前
欢喜方盒完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
jk完成签到,获得积分10
22秒前
Jasper应助sciiiiii采纳,获得10
23秒前
23秒前
乐乐应助黄哈哈采纳,获得10
25秒前
摆烂蛋挞发布了新的文献求助10
25秒前
Fan完成签到,获得积分10
26秒前
aslink完成签到,获得积分10
26秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028