亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一见喜发布了新的文献求助10
2秒前
好好好完成签到,获得积分10
23秒前
37秒前
Jiangtao完成签到,获得积分10
51秒前
huyu完成签到 ,获得积分10
57秒前
1分钟前
SoreThrow发布了新的文献求助10
1分钟前
1分钟前
Leo发布了新的文献求助10
1分钟前
活泼的路人完成签到,获得积分10
1分钟前
1分钟前
Leo完成签到,获得积分10
1分钟前
啊z应助科研通管家采纳,获得10
1分钟前
1分钟前
yhw发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Lu发布了新的文献求助10
2分钟前
JamesPei应助puzhongjiMiQ采纳,获得10
3分钟前
NN应助puzhongjiMiQ采纳,获得10
3分钟前
搜集达人应助puzhongjiMiQ采纳,获得10
3分钟前
ccm应助puzhongjiMiQ采纳,获得10
3分钟前
彭于晏应助puzhongjiMiQ采纳,获得10
3分钟前
完美世界应助puzhongjiMiQ采纳,获得10
3分钟前
pluto应助puzhongjiMiQ采纳,获得10
3分钟前
ccm应助puzhongjiMiQ采纳,获得10
3分钟前
wanci应助puzhongjiMiQ采纳,获得10
3分钟前
Hello应助puzhongjiMiQ采纳,获得10
3分钟前
霡霂完成签到,获得积分10
3分钟前
3分钟前
孙漪发布了新的文献求助10
3分钟前
3分钟前
wanci应助孙漪采纳,获得10
3分钟前
熬夜波比应助科研通管家采纳,获得10
3分钟前
熬夜波比应助科研通管家采纳,获得10
3分钟前
3分钟前
啊z应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681524
求助须知:如何正确求助?哪些是违规求助? 5009593
关于积分的说明 15175775
捐赠科研通 4841036
什么是DOI,文献DOI怎么找? 2594852
邀请新用户注册赠送积分活动 1547875
关于科研通互助平台的介绍 1505880