Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水溶c100发布了新的文献求助10
1秒前
ren关注了科研通微信公众号
2秒前
Ava应助Stardust采纳,获得10
3秒前
桐桐应助十九岁的时差采纳,获得10
3秒前
3秒前
4秒前
研究生完成签到,获得积分10
4秒前
自觉的凛发布了新的文献求助10
5秒前
所所应助开灯人和关灯人采纳,获得10
5秒前
讨厌科研发布了新的文献求助10
6秒前
快乐一江发布了新的文献求助10
6秒前
8秒前
Tianling完成签到,获得积分0
9秒前
好吃鱼完成签到,获得积分10
9秒前
等一个晴天完成签到,获得积分10
12秒前
胡涂涂发布了新的文献求助10
14秒前
研友_VZG7GZ应助小赞采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
快乐一江完成签到,获得积分10
18秒前
19秒前
24秒前
啊标完成签到,获得积分10
24秒前
24秒前
水溶c100完成签到,获得积分10
25秒前
梨江鱼完成签到,获得积分10
25秒前
LcnTCM完成签到,获得积分10
25秒前
28秒前
maizhenpeng发布了新的文献求助10
29秒前
执着乐双发布了新的文献求助30
31秒前
小赞发布了新的文献求助10
31秒前
35秒前
39秒前
沈静完成签到,获得积分10
39秒前
41秒前
loski发布了新的文献求助10
41秒前
marina完成签到 ,获得积分20
42秒前
45秒前
时尚俊驰发布了新的文献求助10
45秒前
46秒前
文献发布了新的文献求助30
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173