Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过代柔完成签到 ,获得积分10
2秒前
Biofly526完成签到,获得积分10
5秒前
5秒前
7秒前
王妍完成签到 ,获得积分10
10秒前
Proddy完成签到 ,获得积分10
11秒前
zzzzzzzzzz发布了新的文献求助10
12秒前
longtengfei完成签到,获得积分10
16秒前
冷艳的友瑶完成签到,获得积分10
17秒前
Kristina完成签到,获得积分10
19秒前
rofsc完成签到 ,获得积分10
20秒前
bian完成签到 ,获得积分10
21秒前
直率芮完成签到 ,获得积分10
21秒前
新楚完成签到 ,获得积分10
21秒前
直率芮关注了科研通微信公众号
25秒前
mark33442完成签到,获得积分10
32秒前
HonestLiang完成签到,获得积分10
36秒前
萧水白完成签到,获得积分10
39秒前
领导范儿应助科研通管家采纳,获得10
45秒前
InfoNinja应助科研通管家采纳,获得30
45秒前
oceanao应助科研通管家采纳,获得10
46秒前
InfoNinja应助科研通管家采纳,获得30
46秒前
oceanao应助科研通管家采纳,获得10
46秒前
几又应助科研通管家采纳,获得10
46秒前
脑洞疼应助科研通管家采纳,获得10
46秒前
粗心的栾完成签到,获得积分10
49秒前
Yang完成签到,获得积分10
50秒前
YangSY完成签到,获得积分10
52秒前
张小度ever完成签到 ,获得积分10
56秒前
sowhat完成签到 ,获得积分10
57秒前
宇文非笑完成签到 ,获得积分10
59秒前
59秒前
简单发布了新的文献求助10
1分钟前
林夕完成签到 ,获得积分10
1分钟前
:!完成签到,获得积分10
1分钟前
April完成签到 ,获得积分10
1分钟前
天天快乐应助吴红波采纳,获得10
1分钟前
lx完成签到,获得积分10
1分钟前
LeoYiS214完成签到,获得积分10
1分钟前
shawn完成签到,获得积分10
1分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164848
求助须知:如何正确求助?哪些是违规求助? 2815952
关于积分的说明 7910640
捐赠科研通 2475510
什么是DOI,文献DOI怎么找? 1318253
科研通“疑难数据库(出版商)”最低求助积分说明 632053
版权声明 602313