Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不安太阳完成签到,获得积分10
1秒前
t_suo完成签到,获得积分10
1秒前
bioinforiver完成签到,获得积分10
1秒前
乐观跳跳糖完成签到,获得积分10
1秒前
1秒前
WxChen发布了新的文献求助10
2秒前
2秒前
酷炫的香魔完成签到,获得积分10
2秒前
2秒前
2秒前
NexusExplorer应助无奈满天采纳,获得10
2秒前
qwt_hello完成签到,获得积分10
2秒前
2秒前
海涛完成签到,获得积分10
3秒前
星星发布了新的文献求助10
4秒前
qq完成签到,获得积分10
4秒前
4秒前
4秒前
中央戏精学院完成签到,获得积分10
4秒前
寒冷依秋完成签到,获得积分10
4秒前
彭于晏应助jogrgr采纳,获得10
4秒前
思源应助momo采纳,获得10
5秒前
guozi应助yi采纳,获得10
5秒前
科研通AI2S应助鲤鱼凛采纳,获得10
5秒前
5秒前
kumarr发布了新的文献求助10
5秒前
5秒前
时尚语梦发布了新的文献求助10
5秒前
苹果酸奶完成签到,获得积分10
6秒前
标致小伙发布了新的文献求助10
7秒前
7秒前
7秒前
科研民工发布了新的文献求助10
7秒前
Owen应助sun采纳,获得10
7秒前
handsomecat发布了新的文献求助10
7秒前
乐乐关注了科研通微信公众号
7秒前
7秒前
Kriemhild完成签到,获得积分10
8秒前
dz完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759