Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
1秒前
刻苦大叔完成签到,获得积分10
1秒前
隐形曼青应助哈哈哈哈采纳,获得10
1秒前
赘婿应助开朗的尔风采纳,获得10
1秒前
积极荆发布了新的文献求助10
2秒前
ddd完成签到,获得积分10
2秒前
2秒前
甜美的茹嫣完成签到,获得积分10
3秒前
一一完成签到,获得积分10
3秒前
梦里花落声应助afterly采纳,获得10
3秒前
佚名发布了新的文献求助10
3秒前
CHINA_C13发布了新的文献求助10
3秒前
羊羊羊完成签到 ,获得积分10
3秒前
4秒前
越越发布了新的文献求助10
4秒前
zhou完成签到,获得积分10
4秒前
4秒前
汉堡包应助yier采纳,获得10
5秒前
5秒前
5秒前
ycl发布了新的文献求助10
5秒前
kk完成签到,获得积分10
5秒前
共享精神应助一一采纳,获得10
6秒前
翻斗花园612完成签到,获得积分10
6秒前
zeng发布了新的文献求助10
6秒前
JD完成签到,获得积分10
6秒前
6秒前
genesquared完成签到,获得积分10
7秒前
遥远的救世主完成签到,获得积分10
7秒前
stark完成签到,获得积分10
7秒前
所所应助霸气的雪莲采纳,获得10
7秒前
勤恳的依霜完成签到,获得积分10
8秒前
8秒前
cassette发布了新的文献求助10
8秒前
8秒前
ash发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
jadexu完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257834
求助须知:如何正确求助?哪些是违规求助? 4419879
关于积分的说明 13758101
捐赠科研通 4293370
什么是DOI,文献DOI怎么找? 2355867
邀请新用户注册赠送积分活动 1352349
关于科研通互助平台的介绍 1313086