Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

帕累托原理 数学优化 遗传算法 多目标优化 计算机科学 采样(信号处理) 算法 数学 滤波器(信号处理) 计算机视觉
作者
Qi Luo,Jianfeng Wu,Yun Yang,Jiazhong Qian,Jichun Wu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:534: 352-363 被引量:47
标识
DOI:10.1016/j.jhydrol.2016.01.009
摘要

Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation–optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助七号楼少女采纳,获得10
刚刚
Reeee完成签到 ,获得积分10
1秒前
jiangmi完成签到,获得积分10
1秒前
长情的雅绿完成签到,获得积分10
1秒前
bkagyin应助kuankuan采纳,获得10
1秒前
xiaowangwang完成签到 ,获得积分10
2秒前
Criminology34应助Silole采纳,获得10
2秒前
jananie完成签到,获得积分10
6秒前
同迎完成签到,获得积分10
6秒前
6秒前
7秒前
Platinum完成签到,获得积分10
7秒前
小二郎应助迷路的煎蛋采纳,获得10
8秒前
鲤鱼听荷完成签到 ,获得积分10
8秒前
yliu完成签到,获得积分10
8秒前
9秒前
只道寻常完成签到,获得积分10
10秒前
10秒前
10秒前
proverby发布了新的文献求助10
10秒前
忐忑的方盒完成签到 ,获得积分10
11秒前
small_lazy发布了新的文献求助10
11秒前
JeromineJade完成签到,获得积分10
11秒前
Lurant完成签到,获得积分20
12秒前
njtechfms完成签到,获得积分10
14秒前
Fangli完成签到 ,获得积分10
15秒前
16秒前
温暖芒果完成签到,获得积分10
16秒前
传奇3应助kuankuan采纳,获得10
17秒前
李清杰完成签到,获得积分10
17秒前
隽永完成签到 ,获得积分10
17秒前
qin完成签到,获得积分10
18秒前
沐沐汐完成签到 ,获得积分10
20秒前
20秒前
Vincent_77发布了新的文献求助10
20秒前
上官若男应助温暖芒果采纳,获得10
21秒前
大牛完成签到,获得积分10
21秒前
传奇3应助Bingo采纳,获得50
22秒前
白蒲桃完成签到 ,获得积分10
22秒前
果汁发布了新的文献求助10
24秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378995
求助须知:如何正确求助?哪些是违规求助? 4503456
关于积分的说明 14015772
捐赠科研通 4412144
什么是DOI,文献DOI怎么找? 2423708
邀请新用户注册赠送积分活动 1416600
关于科研通互助平台的介绍 1394111