亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Where is My Parking Spot?

占用率 预测建模 计算机科学 星期几的名称 运输工程 交互式信息亭 流量(计算机网络) 数据集 实时计算 数据挖掘 工程类 机器学习 人工智能 计算机安全 建筑工程 语言学 哲学 操作系统
作者
Arbi Tamrazian,Sean Qian,Ram Rajagopal
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2489 (1): 77-85 被引量:21
标识
DOI:10.3141/2489-09
摘要

Parking occupancy information is central to the management of parking and traffic demand. This study proposed efficient unsupervised learning algorithms to predict parking occupancy rates. Two types of predictions were studied: (a) an offline prediction, in which next-day occupancy was predicted by using historical data along with various features (day of week, weather, seasonality), and (b) an online prediction, in which occupancy of future hours of the current day was predicted with both historical and real-time data. The two models can be applied to both off-street and on-street parking. Two data sources were used: parking payment kiosks for a visitors' parking garage and newly deployed real-time spot-by-spot parking sensors for a commuter garage. It was found that, with a proper set of features, the offline method could successfully distinguish different flow patterns, congested or underused, with intensive or mild arrival and departure rates. The offline procedure significantly outperformed both the historical and the previous day's average. The online method provided generally more accurate predictions than the offline method because it learned from the real-time occupancy data. As time progressed, the mean and maximum error rates of the online prediction decreased to a level well below both the historical average and the offline prediction error. A sharp decline of the prediction error could be obtained when sufficient real-time occupancy data were collected and the type of flow pattern was identified (around 9:00 a.m. in a case study).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
黑暗炸鸡发布了新的文献求助10
13秒前
mwm完成签到 ,获得积分10
24秒前
深情安青应助黑暗炸鸡采纳,获得10
27秒前
36秒前
大胆的碧菡完成签到,获得积分10
36秒前
Criminology34应助科研通管家采纳,获得10
38秒前
Criminology34应助科研通管家采纳,获得30
38秒前
Akim应助科研通管家采纳,获得10
38秒前
44秒前
51秒前
桐桐应助酷炫的面包采纳,获得10
54秒前
kukudou2发布了新的文献求助10
55秒前
kukudou2完成签到,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
王绪威发布了新的文献求助10
1分钟前
科研通AI5应助王绪威采纳,获得10
1分钟前
chenlc971125完成签到 ,获得积分10
1分钟前
treat4869完成签到 ,获得积分10
2分钟前
共享精神应助贺喆采纳,获得10
2分钟前
快乐的笑阳完成签到,获得积分10
2分钟前
开心成威完成签到 ,获得积分10
2分钟前
润泽完成签到,获得积分10
3分钟前
戈屿完成签到 ,获得积分10
3分钟前
3分钟前
灵巧嚓茶发布了新的文献求助10
3分钟前
3分钟前
Thanks完成签到 ,获得积分10
3分钟前
Orange应助小冯看不懂采纳,获得10
3分钟前
Nuyoah完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
轻语完成签到 ,获得积分10
4分钟前
冰西瓜完成签到 ,获得积分0
4分钟前
4分钟前
噫吁嚱完成签到 ,获得积分10
4分钟前
Augustines完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126912
求助须知:如何正确求助?哪些是违规求助? 4330184
关于积分的说明 13492980
捐赠科研通 4165597
什么是DOI,文献DOI怎么找? 2283452
邀请新用户注册赠送积分活动 1284485
关于科研通互助平台的介绍 1224316