Where is My Parking Spot?

占用率 预测建模 计算机科学 星期几的名称 运输工程 交互式信息亭 流量(计算机网络) 数据集 实时计算 数据挖掘 工程类 机器学习 人工智能 计算机安全 操作系统 语言学 哲学 建筑工程
作者
Arbi Tamrazian,Sean Qian,Ram Rajagopal
出处
期刊:Transportation Research Record [SAGE]
卷期号:2489 (1): 77-85 被引量:21
标识
DOI:10.3141/2489-09
摘要

Parking occupancy information is central to the management of parking and traffic demand. This study proposed efficient unsupervised learning algorithms to predict parking occupancy rates. Two types of predictions were studied: (a) an offline prediction, in which next-day occupancy was predicted by using historical data along with various features (day of week, weather, seasonality), and (b) an online prediction, in which occupancy of future hours of the current day was predicted with both historical and real-time data. The two models can be applied to both off-street and on-street parking. Two data sources were used: parking payment kiosks for a visitors' parking garage and newly deployed real-time spot-by-spot parking sensors for a commuter garage. It was found that, with a proper set of features, the offline method could successfully distinguish different flow patterns, congested or underused, with intensive or mild arrival and departure rates. The offline procedure significantly outperformed both the historical and the previous day's average. The online method provided generally more accurate predictions than the offline method because it learned from the real-time occupancy data. As time progressed, the mean and maximum error rates of the online prediction decreased to a level well below both the historical average and the offline prediction error. A sharp decline of the prediction error could be obtained when sufficient real-time occupancy data were collected and the type of flow pattern was identified (around 9:00 a.m. in a case study).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丁一发布了新的文献求助10
1秒前
1秒前
Ann发布了新的文献求助10
1秒前
judy完成签到,获得积分20
2秒前
哇卡哇卡发布了新的文献求助10
5秒前
Eourique发布了新的文献求助10
6秒前
领导范儿应助lili采纳,获得10
8秒前
纯真橘子完成签到,获得积分10
8秒前
Ann完成签到,获得积分10
9秒前
wanci应助ye_hang采纳,获得10
9秒前
swing完成签到,获得积分10
9秒前
11秒前
12秒前
星宿完成签到,获得积分10
12秒前
Owen应助哇卡哇卡采纳,获得10
13秒前
zoushiyi完成签到 ,获得积分20
15秒前
Owen应助小小牛采纳,获得10
16秒前
16秒前
17秒前
oceanao应助加菲丰丰采纳,获得10
20秒前
Yishai_Song应助Noah采纳,获得10
26秒前
27秒前
Yina完成签到 ,获得积分10
30秒前
专注的代萱完成签到,获得积分20
31秒前
星宿关注了科研通微信公众号
32秒前
小谢发布了新的文献求助10
32秒前
天天快乐应助董咚咚采纳,获得10
33秒前
饱满金毛发布了新的文献求助20
34秒前
rrw完成签到 ,获得积分10
35秒前
无敌大流流完成签到,获得积分10
35秒前
子明完成签到 ,获得积分10
36秒前
36秒前
夏蓉完成签到,获得积分10
37秒前
38秒前
39秒前
guan发布了新的文献求助10
43秒前
土娃子发布了新的文献求助10
43秒前
追寻的安南完成签到 ,获得积分10
44秒前
zeng5288发布了新的文献求助50
44秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234