Where is My Parking Spot?

占用率 预测建模 计算机科学 星期几的名称 运输工程 交互式信息亭 流量(计算机网络) 数据集 实时计算 数据挖掘 工程类 机器学习 人工智能 计算机安全 操作系统 语言学 哲学 建筑工程
作者
Arbi Tamrazian,Sean Qian,Ram Rajagopal
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2489 (1): 77-85 被引量:21
标识
DOI:10.3141/2489-09
摘要

Parking occupancy information is central to the management of parking and traffic demand. This study proposed efficient unsupervised learning algorithms to predict parking occupancy rates. Two types of predictions were studied: (a) an offline prediction, in which next-day occupancy was predicted by using historical data along with various features (day of week, weather, seasonality), and (b) an online prediction, in which occupancy of future hours of the current day was predicted with both historical and real-time data. The two models can be applied to both off-street and on-street parking. Two data sources were used: parking payment kiosks for a visitors' parking garage and newly deployed real-time spot-by-spot parking sensors for a commuter garage. It was found that, with a proper set of features, the offline method could successfully distinguish different flow patterns, congested or underused, with intensive or mild arrival and departure rates. The offline procedure significantly outperformed both the historical and the previous day's average. The online method provided generally more accurate predictions than the offline method because it learned from the real-time occupancy data. As time progressed, the mean and maximum error rates of the online prediction decreased to a level well below both the historical average and the offline prediction error. A sharp decline of the prediction error could be obtained when sufficient real-time occupancy data were collected and the type of flow pattern was identified (around 9:00 a.m. in a case study).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
可是完成签到 ,获得积分10
2秒前
5秒前
5秒前
5秒前
7秒前
7秒前
Ode发布了新的文献求助10
7秒前
honest完成签到,获得积分10
10秒前
樊书雪完成签到,获得积分10
10秒前
大牛顿完成签到,获得积分10
10秒前
Jonah完成签到,获得积分20
10秒前
晴烟ZYM发布了新的文献求助30
11秒前
milk完成签到 ,获得积分10
11秒前
11秒前
orixero应助彪壮的机器猫采纳,获得50
11秒前
问筠发布了新的文献求助10
12秒前
ding应助1601929058x采纳,获得10
12秒前
12秒前
叶春曼完成签到,获得积分10
12秒前
杨可言完成签到,获得积分10
12秒前
iiiyyy完成签到,获得积分10
12秒前
Ruyii发布了新的文献求助10
13秒前
杜兰特发布了新的文献求助10
13秒前
14秒前
SAXA完成签到,获得积分10
14秒前
15秒前
16秒前
打打应助淡淡听枫采纳,获得10
16秒前
16秒前
Akim应助情殇采纳,获得10
17秒前
小男孩发布了新的文献求助10
17秒前
微风打了烊完成签到,获得积分10
18秒前
水木应助如意板栗采纳,获得10
18秒前
英姑应助玉玉采纳,获得10
18秒前
个性的人英完成签到,获得积分20
19秒前
蒋念寒发布了新的文献求助10
19秒前
眼睛大萃完成签到,获得积分10
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452