亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Where is My Parking Spot?

占用率 预测建模 计算机科学 星期几的名称 运输工程 交互式信息亭 流量(计算机网络) 数据集 实时计算 数据挖掘 工程类 机器学习 人工智能 计算机安全 操作系统 语言学 哲学 建筑工程
作者
Arbi Tamrazian,Sean Qian,Ram Rajagopal
出处
期刊:Transportation Research Record [SAGE]
卷期号:2489 (1): 77-85 被引量:21
标识
DOI:10.3141/2489-09
摘要

Parking occupancy information is central to the management of parking and traffic demand. This study proposed efficient unsupervised learning algorithms to predict parking occupancy rates. Two types of predictions were studied: (a) an offline prediction, in which next-day occupancy was predicted by using historical data along with various features (day of week, weather, seasonality), and (b) an online prediction, in which occupancy of future hours of the current day was predicted with both historical and real-time data. The two models can be applied to both off-street and on-street parking. Two data sources were used: parking payment kiosks for a visitors' parking garage and newly deployed real-time spot-by-spot parking sensors for a commuter garage. It was found that, with a proper set of features, the offline method could successfully distinguish different flow patterns, congested or underused, with intensive or mild arrival and departure rates. The offline procedure significantly outperformed both the historical and the previous day's average. The online method provided generally more accurate predictions than the offline method because it learned from the real-time occupancy data. As time progressed, the mean and maximum error rates of the online prediction decreased to a level well below both the historical average and the offline prediction error. A sharp decline of the prediction error could be obtained when sufficient real-time occupancy data were collected and the type of flow pattern was identified (around 9:00 a.m. in a case study).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇的梨愁完成签到 ,获得积分10
2秒前
Alberta完成签到,获得积分10
3秒前
白三完成签到,获得积分10
8秒前
123完成签到 ,获得积分10
9秒前
HTniconico完成签到 ,获得积分10
17秒前
开朗白山完成签到,获得积分10
20秒前
24秒前
jingluo发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
31秒前
彭于晏应助hhh采纳,获得10
35秒前
我主沉浮完成签到,获得积分10
35秒前
36秒前
嘻嘻哈哈应助abc采纳,获得10
37秒前
39秒前
八两发布了新的文献求助10
43秒前
43秒前
43秒前
44秒前
44秒前
45秒前
45秒前
46秒前
46秒前
46秒前
117完成签到,获得积分10
48秒前
hhh发布了新的文献求助10
48秒前
hhh发布了新的文献求助10
49秒前
hhh发布了新的文献求助10
49秒前
hhh发布了新的文献求助10
49秒前
可爱玫瑰发布了新的文献求助10
51秒前
浮游应助inin采纳,获得10
52秒前
1分钟前
西柚柠檬完成签到 ,获得积分10
1分钟前
梓镱儿完成签到,获得积分10
1分钟前
Aulorra完成签到,获得积分20
1分钟前
1分钟前
久久丫完成签到 ,获得积分10
1分钟前
1分钟前
科目三应助zy采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164