Very High Surface Capacity with Si Negative Electrodes Embedded in Copper Foam as 3D Current Collector

石墨 电极 材料科学 重量分析 集电器 锂(药物) 复合材料 纳米技术 锂离子电池 化学工程 电池(电) 光电子学 冶金 化学 电解质 有机化学 功率(物理) 物理化学 内分泌学 工程类 物理 医学 量子力学
作者
Driss Mazouzi,David Reyter,Magali Gauthier,Dominique Guyomard,Lionel Roué,Bernard Lestriez
出处
期刊:Meeting abstracts 卷期号:MA2014-02 (5): 352-352
标识
DOI:10.1149/ma2014-02/5/352
摘要

For the last 10 years, a tremendous amount of work has been published to solve the problem of capacity fade of silicon-based electrodes which prevents their utilization in commercial lithium-ion batteries. The use of Si nanoparticles/nanowires to better accommodate large strain without cracking has developed and is very popular in the academic community. By playing on the nano-architecturing effect or tailoring the composite electrode formulation, several groups have reached up to 1000 cycles in half-cells versus lithium metal [1,2]. However, a careful look at the papers shows that in all studies the active mass loading is very low, typically less than 1 mg per cm², and thus the practical surface capacity of the corresponding electrodes is low, typically less than 1 mAh per cm². This is much lower than that of the state of the art graphite-based negative electrode, which reaches up to 5 mAh per cm² in cellular phones for example. As a consequence, although silicon is much more attractive than graphite due to its very high gravimetric capacity (3572 mAh g -1 versus 372 mAh g -1 for graphite) and volumetric capacity (2249 versus 779 mAh cm -3 for graphite), Si-based composite electrodes show lower practical surface capacity, as a matter of fact. The point is that the cycle life of Si-based electrodes dramatically decreases as the active mass loading increases, e.g. 1000 cycles at 0.5 mg per cm² vs. 50 cycles at 4 mg per cm² (Figure 1). We demonstrated that using copper foam instead of copper foil as current collector shows a great advantage in the cycle life and power performance. More than 400 cycles at an impressive Si loading of 10 mg cm - ² could be reached, i.e. with a surface capacity of 10 mAh cm -2 [3]. The thinness of the composite coating on the foam walls favors a better preservation of the electronic wiring upon cycling and fast lithium ion diffusion. A higher coulombic efficiency in half cells with lithium metal as the counter electrode is achieved by using carbon nanofibers (CNF) rather than carbon black (CB). The possibility to reach in practice higher surface could allow a significant increase of both the volumetric and gravimetric energy densities by 23% and 19%, respectively, for the Cu foam-Silicon//LiFePO 4 stack compared to the Graphite/LiFePO 4 stack of traditional design. Acknowledgements Financial funding from the Agence Nationale de la Recherche (ANR) of France (BASILIC project) and the Natural Science and Engineering Research Council (NSERC) of Canada is acknowledged. The authors thank D. Pilon (Metafoam Inc.) for supplying the Cu foams. References [1] L. Hu, F. La Mantia, H. Wu, X. Xie, J. McDonough, M. Pasta, Y. Cui, Adv. Energy Mater., 1, 1012 (2011). [2] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, Science, 334, 75 (2011). [3] D. Mazouzi, , D. Reyter, M. Gauthier, P. Moreau, D. Guyomard, L. Roué, B. Lestriez, Adv. Energy Mater., DOI: 10.1002/aenm.201301718. Figure 1. (a) Surface SEM images of a Cu foam filled with 5 mg of Si/CNF/CMC/Buffer composite electrode (4.6 mg Si per cm 2 ). (b) Cycle life as a function of the active mass loading for Foil-Si/CB/CMC/Buffer and Foam-Si/CNF/CMC/Buffer electrodes (Si//Li half-cell with LP30+2%VC+10%FEC, capacity limitation of 1200mAh per g of Si).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
漂亮幻莲发布了新的文献求助10
4秒前
烟花应助眼睛大的尔蝶采纳,获得30
4秒前
4秒前
6秒前
科研通AI2S应助QhL采纳,获得10
7秒前
123456完成签到,获得积分10
7秒前
juziyaya应助生动的凡采纳,获得20
8秒前
寒食应助yolanda采纳,获得10
8秒前
Manzia完成签到,获得积分10
9秒前
赘婿应助木木采纳,获得10
10秒前
10秒前
11秒前
13秒前
monere应助jiusi采纳,获得10
14秒前
科研通AI2S应助VDC采纳,获得10
14秒前
kyrry完成签到,获得积分10
14秒前
香蕉不评发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
17秒前
美好黑猫完成签到 ,获得积分10
17秒前
huieqybghog发布了新的文献求助10
17秒前
monere应助sjdove采纳,获得10
18秒前
19秒前
冷静水蓝完成签到,获得积分10
19秒前
vspill发布了新的文献求助10
20秒前
20秒前
Lucas应助樊樊樊梵情采纳,获得10
21秒前
华仔应助老实的栾采纳,获得10
22秒前
十一发布了新的文献求助10
23秒前
jiusi完成签到,获得积分20
24秒前
24秒前
merrylake完成签到 ,获得积分10
25秒前
bkagyin应助shice951229采纳,获得10
26秒前
27秒前
WFR发布了新的文献求助10
27秒前
蒋蒋完成签到,获得积分10
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267288
求助须知:如何正确求助?哪些是违规求助? 2906812
关于积分的说明 8339691
捐赠科研通 2577377
什么是DOI,文献DOI怎么找? 1400921
科研通“疑难数据库(出版商)”最低求助积分说明 654973
邀请新用户注册赠送积分活动 633892