Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images

污渍 人工智能 规范化(社会学) 计算机科学 染色 光密度 假彩色 模式识别(心理学) 计算机视觉 彩色图像 病理 图像处理 图像(数学) 医学 眼科 社会学 人类学
作者
Abhishek Vahadane,Tingying Peng,Amit Sethi,Shadi Albarqouni,Lichao Wang,Maximilian Baust,Katja Steiger,Anna Melissa Schlitter,Iréne Esposito,Nassir Navab
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 1962-1971 被引量:585
标识
DOI:10.1109/tmi.2016.2529665
摘要

Staining and scanning of tissue samples for microscopic examination is fraught with undesirable color variations arising from differences in raw materials and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing tissue samples, color normalization and stain separation of the tissue images can be helpful for both pathologists and software. Techniques that are used for natural images fail to utilize structural properties of stained tissue samples and produce undesirable color distortions. The stain concentration cannot be negative. Tissue samples are stained with only a few stains and most tissue regions are characterized by at most one effective stain. We model these physical phenomena that define the tissue structure by first decomposing images in an unsupervised manner into stain density maps that are sparse and non-negative. For a given image, we combine its stain density maps with stain color basis of a pathologist-preferred target image, thus altering only its color while preserving its structure described by the maps. Stain density correlation with ground truth and preference by pathologists were higher for images normalized using our method when compared to other alternatives. We also propose a computationally faster extension of this technique for large whole-slide images that selects an appropriate patch sample instead of using the entire image to compute the stain color basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
css完成签到,获得积分10
2秒前
3秒前
轻松小之完成签到,获得积分10
3秒前
猪猪hero应助稳重的念真采纳,获得10
4秒前
ding应助www采纳,获得10
5秒前
5秒前
搜集达人应助wendy.lv采纳,获得10
5秒前
十六发布了新的文献求助10
6秒前
7秒前
8秒前
轻松小之发布了新的文献求助10
9秒前
9秒前
Sayuan应助李峙采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得20
10秒前
乐乐应助科研通管家采纳,获得30
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
Cholly发布了新的文献求助10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
ganjqly应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
LBX应助科研通管家采纳,获得30
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
邓佳鑫Alan应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966589
求助须知:如何正确求助?哪些是违规求助? 3512031
关于积分的说明 11161353
捐赠科研通 3246821
什么是DOI,文献DOI怎么找? 1793510
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420