Structural deformation prediction model based on extreme learning machine algorithm and particle swarm optimization

极限学习机 粒子群优化 均方误差 人工神经网络 平均绝对百分比误差 算法 近似误差 相关系数 变形(气象学) 反向传播 平均绝对误差 决定系数 计算机科学 数学 人工智能 结构工程 工程类 机器学习 统计 气象学 物理
作者
Shouyan Jiang,Linxin Zhao,Chengbin Du
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (6): 2786-2803 被引量:4
标识
DOI:10.1177/14759217211072237
摘要

In this paper, an extreme learning machine (ELM) algorithm based on particle swarm optimization (PSO) is proposed to predict structural deformation. Taking an aqueduct located in Tiantai County, Zhejiang, China, as a case study, a series of observations of the aqueduct vertical displacements and crack openings were used to train a neural network. Then, variables representing environmental factors (air temperature), hydraulic factors (water level), and aging were selected as the influence factors input into the prediction model. Finally, the proposed PSO–ELM model was used to predict the vertical deformation and crack opening of the aqueduct, and the predicted results were compared with the monitored values using four evaluation indexes: mean absolute error ( MAE), mean squared error ( MSE), maximum absolute error ( S), and correlation coefficient ( R). The prediction results obtained using the PSO–ELM model were then compared with those obtained using the evolutionary ELM, conventional ELM, back propagation neural network, long short-term memory, and multiple linear regression models. The results indicate that the proposed PSO–ELM model has an evidently superior predictive ability, with higher values of R and lower values of MAE, MSE, and S. The proposed model can therefore be confidently used to serve as a tool similar to a “weather forecast” function to predict the vertical deformation and crack openings of an aqueduct and may be employed for other structural monitoring applications as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Zjx采纳,获得10
刚刚
1秒前
无情向薇发布了新的文献求助10
2秒前
keep发布了新的文献求助10
3秒前
Nn发布了新的文献求助10
3秒前
搜集达人应助薛人英采纳,获得10
4秒前
yue发布了新的文献求助10
5秒前
辛勤的寄瑶完成签到 ,获得积分10
5秒前
9秒前
coolkid应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
10秒前
绝情继父应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
10秒前
wanci应助科研通管家采纳,获得10
10秒前
coolkid应助科研通管家采纳,获得10
10秒前
coolkid应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
小憩发布了新的文献求助10
14秒前
花生完成签到,获得积分10
18秒前
21秒前
21秒前
小嘎完成签到 ,获得积分10
21秒前
22秒前
木棉完成签到,获得积分20
24秒前
百里健柏完成签到,获得积分10
27秒前
文静小凝发布了新的文献求助30
27秒前
GSQ发布了新的文献求助10
28秒前
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652