Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning

先发制人 计算机科学 强化学习 作业车间调度 单调速率调度 两级调度 公平份额计划 动态优先级调度 调度(生产过程) 流水车间调度 分布式计算 马尔可夫决策过程 工作车间 数学优化 人工智能 工业工程 运筹学 工程类 马尔可夫过程 地铁列车时刻表 操作系统 统计 数学
作者
Xiaohan Wang,Zhang Li,Ting-Yu Lin,Chun Zhao,Kunyu Wang,Zhen Chen
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:77: 102324-102324 被引量:85
标识
DOI:10.1016/j.rcim.2022.102324
摘要

In smart manufacturing, robots gradually replace traditional machines as new processing units, which have significantly liberated laborers and reduced manufacturing expenditure. However, manufacturing resources are usually limited so that the preemption relationship exists among robots. Under this circumstance, job scheduling puts forward higher requirements on accuracy and generalization. To this end, this paper proposes a scheduling algorithm to solve job scheduling problems in a resource preemption environment with multi-agent reinforcement learning. The resource preemption environment is modeled as a decentralized partially observable Markov decision process, where each job is regarded as an intelligent agent that chooses an available robot according to its current partial observation. Based on this modeling, a multi-agent scheduling architecture is constructed to handle the high-dimension action space issue caused by multi-task simultaneous scheduling. Besides, multi-agent reinforcement learning is employed to learn both the decision-making policy of each agent and the cooperation between job agents. This paper is novel in addressing the scheduling problem in a resource preemption environment and solving the job shop scheduling problem with multi-agent reinforcement learning. The experiments of the case study indicate that our proposed method outperforms the traditional rule-based methods and the distributed-agent reinforcement learning method in total makespan, training stability, and model generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HandsomeBoy完成签到 ,获得积分10
刚刚
sun完成签到,获得积分10
1秒前
1秒前
Jasper应助刘星宇采纳,获得30
2秒前
hooh完成签到,获得积分10
2秒前
ding应助YOUNG采纳,获得10
2秒前
小二郎应助称心的蛟凤采纳,获得10
3秒前
ZZyy完成签到 ,获得积分10
3秒前
my完成签到,获得积分10
4秒前
爱吃香菜完成签到 ,获得积分20
5秒前
咕噜咕噜发布了新的文献求助10
5秒前
askaga完成签到,获得积分10
5秒前
万能图书馆应助勿扰采纳,获得10
5秒前
6秒前
UKU发布了新的文献求助10
6秒前
Yly发布了新的文献求助10
7秒前
8秒前
充电宝应助PhD-SCAU采纳,获得10
9秒前
chen完成签到 ,获得积分10
10秒前
10秒前
蟹黄堡bro完成签到,获得积分10
11秒前
wang发布了新的文献求助30
11秒前
迷路的雅霜完成签到,获得积分10
12秒前
12秒前
科研通AI6应助JJJJJJJJJJJ采纳,获得10
12秒前
丘比特应助飘逸的太阳采纳,获得10
12秒前
MAFAKETHS发布了新的文献求助10
13秒前
13秒前
初雪完成签到,获得积分10
14秒前
东方元语发布了新的文献求助20
14秒前
15秒前
15秒前
是哇哦发布了新的文献求助10
16秒前
科目三应助咕噜咕噜采纳,获得10
16秒前
chenchunlan96完成签到,获得积分10
16秒前
16秒前
17秒前
汉堡包应助LLLLLJJXX采纳,获得10
18秒前
wang完成签到,获得积分10
18秒前
xc发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851