Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning

先发制人 计算机科学 强化学习 作业车间调度 单调速率调度 两级调度 公平份额计划 动态优先级调度 调度(生产过程) 流水车间调度 分布式计算 马尔可夫决策过程 工作车间 数学优化 人工智能 工业工程 运筹学 工程类 马尔可夫过程 地铁列车时刻表 操作系统 统计 数学
作者
Xiaohan Wang,Zhang Li,Ting-Yu Lin,Chun Zhao,Kunyu Wang,Zhen Chen
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:77: 102324-102324 被引量:85
标识
DOI:10.1016/j.rcim.2022.102324
摘要

In smart manufacturing, robots gradually replace traditional machines as new processing units, which have significantly liberated laborers and reduced manufacturing expenditure. However, manufacturing resources are usually limited so that the preemption relationship exists among robots. Under this circumstance, job scheduling puts forward higher requirements on accuracy and generalization. To this end, this paper proposes a scheduling algorithm to solve job scheduling problems in a resource preemption environment with multi-agent reinforcement learning. The resource preemption environment is modeled as a decentralized partially observable Markov decision process, where each job is regarded as an intelligent agent that chooses an available robot according to its current partial observation. Based on this modeling, a multi-agent scheduling architecture is constructed to handle the high-dimension action space issue caused by multi-task simultaneous scheduling. Besides, multi-agent reinforcement learning is employed to learn both the decision-making policy of each agent and the cooperation between job agents. This paper is novel in addressing the scheduling problem in a resource preemption environment and solving the job shop scheduling problem with multi-agent reinforcement learning. The experiments of the case study indicate that our proposed method outperforms the traditional rule-based methods and the distributed-agent reinforcement learning method in total makespan, training stability, and model generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助isabellae采纳,获得10
刚刚
开花不铁树完成签到,获得积分20
1秒前
2秒前
852应助鸡蛋灌饼与掉渣饼采纳,获得10
2秒前
2秒前
3秒前
Criminology34应助二五九采纳,获得10
5秒前
晚星发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
星空发布了新的文献求助10
10秒前
文献发布了新的文献求助30
12秒前
13秒前
13秒前
14秒前
16秒前
17秒前
Rachel完成签到,获得积分10
18秒前
codwest完成签到,获得积分10
18秒前
19秒前
19秒前
越旻完成签到,获得积分10
20秒前
zxj完成签到,获得积分10
20秒前
20秒前
喜欢猫发布了新的文献求助10
20秒前
酷炫的爆米花完成签到,获得积分10
21秒前
李爱国应助西海沉采纳,获得10
21秒前
Orange应助方法采纳,获得10
21秒前
21秒前
沉静亿先完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
研友_5Zl9D8发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690