Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning

先发制人 计算机科学 强化学习 作业车间调度 单调速率调度 两级调度 公平份额计划 动态优先级调度 调度(生产过程) 流水车间调度 分布式计算 马尔可夫决策过程 工作车间 数学优化 人工智能 工业工程 运筹学 工程类 马尔可夫过程 地铁列车时刻表 操作系统 统计 数学
作者
Xiaohan Wang,Zhang Li,Ting-Yu Lin,Chun Zhao,Kunyu Wang,Zhen Chen
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:77: 102324-102324 被引量:85
标识
DOI:10.1016/j.rcim.2022.102324
摘要

In smart manufacturing, robots gradually replace traditional machines as new processing units, which have significantly liberated laborers and reduced manufacturing expenditure. However, manufacturing resources are usually limited so that the preemption relationship exists among robots. Under this circumstance, job scheduling puts forward higher requirements on accuracy and generalization. To this end, this paper proposes a scheduling algorithm to solve job scheduling problems in a resource preemption environment with multi-agent reinforcement learning. The resource preemption environment is modeled as a decentralized partially observable Markov decision process, where each job is regarded as an intelligent agent that chooses an available robot according to its current partial observation. Based on this modeling, a multi-agent scheduling architecture is constructed to handle the high-dimension action space issue caused by multi-task simultaneous scheduling. Besides, multi-agent reinforcement learning is employed to learn both the decision-making policy of each agent and the cooperation between job agents. This paper is novel in addressing the scheduling problem in a resource preemption environment and solving the job shop scheduling problem with multi-agent reinforcement learning. The experiments of the case study indicate that our proposed method outperforms the traditional rule-based methods and the distributed-agent reinforcement learning method in total makespan, training stability, and model generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助ayintree采纳,获得10
1秒前
可爱的函函应助ayintree采纳,获得10
1秒前
momo完成签到,获得积分10
1秒前
于瑜与余完成签到,获得积分10
2秒前
yaoeer发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
3秒前
是个宝耶完成签到 ,获得积分10
3秒前
慕青应助优秀的大璇采纳,获得10
4秒前
牛牛完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
FrankJeffison发布了新的文献求助10
4秒前
niNe3YUE应助Waley采纳,获得20
5秒前
欢喜的祥发布了新的文献求助20
5秒前
5秒前
5秒前
熊黛林应助端庄的寄凡采纳,获得10
6秒前
无极微光应助端庄的寄凡采纳,获得20
6秒前
11发布了新的文献求助10
6秒前
7秒前
哲别发布了新的文献求助10
7秒前
8秒前
上官若男应助limyao采纳,获得10
8秒前
Steve发布了新的文献求助10
8秒前
熊黛林完成签到,获得积分10
8秒前
wulififi发布了新的文献求助10
10秒前
xiuxiuzhang发布了新的文献求助10
12秒前
可爱的小朋友完成签到,获得积分10
13秒前
FashionBoy应助shenhongru采纳,获得10
13秒前
QQQ完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
斯文败类应助WEAWEA采纳,获得10
17秒前
17秒前
18秒前
科研通AI2S应助如意的冰双采纳,获得10
19秒前
能干的问晴完成签到,获得积分10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233