Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning

先发制人 计算机科学 强化学习 作业车间调度 单调速率调度 两级调度 公平份额计划 动态优先级调度 调度(生产过程) 流水车间调度 分布式计算 马尔可夫决策过程 工作车间 数学优化 人工智能 工业工程 运筹学 工程类 马尔可夫过程 地铁列车时刻表 数学 操作系统 统计
作者
Xiaohan Wang,Zhang Li,Ting-Yu Lin,Chun Zhao,Kunyu Wang,Zhen Chen
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:77: 102324-102324 被引量:73
标识
DOI:10.1016/j.rcim.2022.102324
摘要

In smart manufacturing, robots gradually replace traditional machines as new processing units, which have significantly liberated laborers and reduced manufacturing expenditure. However, manufacturing resources are usually limited so that the preemption relationship exists among robots. Under this circumstance, job scheduling puts forward higher requirements on accuracy and generalization. To this end, this paper proposes a scheduling algorithm to solve job scheduling problems in a resource preemption environment with multi-agent reinforcement learning. The resource preemption environment is modeled as a decentralized partially observable Markov decision process, where each job is regarded as an intelligent agent that chooses an available robot according to its current partial observation. Based on this modeling, a multi-agent scheduling architecture is constructed to handle the high-dimension action space issue caused by multi-task simultaneous scheduling. Besides, multi-agent reinforcement learning is employed to learn both the decision-making policy of each agent and the cooperation between job agents. This paper is novel in addressing the scheduling problem in a resource preemption environment and solving the job shop scheduling problem with multi-agent reinforcement learning. The experiments of the case study indicate that our proposed method outperforms the traditional rule-based methods and the distributed-agent reinforcement learning method in total makespan, training stability, and model generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anna发布了新的文献求助10
刚刚
刚刚
DrYang发布了新的文献求助10
3秒前
贪玩若蕊发布了新的文献求助10
5秒前
在水一方应助DrYang采纳,获得10
7秒前
两米七发布了新的文献求助20
7秒前
7秒前
科研通AI5应助乐666采纳,获得10
8秒前
爱lx发布了新的文献求助10
9秒前
怕黑的静蕾应助Benliu采纳,获得10
9秒前
大吱吱完成签到,获得积分10
9秒前
10秒前
上官若男应助清修采纳,获得10
10秒前
11秒前
12秒前
博修发布了新的文献求助30
12秒前
Bryan应助anna采纳,获得10
13秒前
巴斯光年发布了新的文献求助10
14秒前
齐忆幽完成签到,获得积分10
16秒前
16秒前
黄金矿工完成签到,获得积分20
18秒前
19秒前
ludwig完成签到,获得积分10
20秒前
天天快乐应助Tao采纳,获得10
20秒前
wangxiaoer完成签到,获得积分10
21秒前
斯文败类应助暖阳采纳,获得10
21秒前
饼藏发布了新的文献求助10
22秒前
52hERTZ发布了新的文献求助10
22秒前
nebula应助cancan采纳,获得10
22秒前
23秒前
23秒前
纵然完成签到,获得积分10
24秒前
飞翔的梦发布了新的文献求助10
25秒前
蓝天白云发布了新的文献求助30
25秒前
yyc完成签到,获得积分10
26秒前
27秒前
xiaochen发布了新的文献求助10
28秒前
edenchestnut给edenchestnut的求助进行了留言
28秒前
藏沙完成签到 ,获得积分10
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578