Development of Machine Learning–Based Models to Predict Treatment Response to Spinal Cord Stimulation

医学 逻辑回归 聚类分析 机器学习 回归 人工智能 队列 预测效度 评定量表 物理医学与康复 物理疗法 统计 内科学 计算机科学 数学 临床心理学
作者
Amir Hadanny,Tessa A. Harland,Olga Khazen,Marisa DiMarzio,Anthony M. Marchese,Ilknur Telkes,Vishad Sukul,Julie G. Pilitsis
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:90 (5): 523-532 被引量:11
标识
DOI:10.1227/neu.0000000000001855
摘要

Despite spinal cord stimulation's (SCS) proven efficacy, failure rates are high with no clear understanding of which patients benefit long term. Currently, patient selection for SCS is based on the subjective experience of the implanting physician.To develop machine learning (ML)-based predictive models of long-term SCS response.A combined unsupervised (clustering) and supervised (classification) ML technique was applied on a prospectively collected cohort of 151 patients, which included 31 features. Clusters identified using unsupervised K-means clustering were fitted with individualized predictive models of logistic regression, random forest, and XGBoost.Two distinct clusters were found, and patients in the cohorts significantly differed in age, duration of chronic pain, preoperative numeric rating scale, and preoperative pain catastrophizing scale scores. Using the 10 most influential features, logistic regression predictive models with a nested cross-validation demonstrated the highest overall performance with the area under the curve of 0.757 and 0.708 for each respective cluster.This combined unsupervised-supervised learning approach yielded high predictive performance, suggesting that advanced ML-derived approaches have potential to be used as a functional clinical tool to improve long-term SCS outcomes. Further studies are needed for optimization and external validation of these models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
NexusExplorer应助kala采纳,获得10
刚刚
1秒前
莫默完成签到,获得积分10
1秒前
1秒前
Apricity应助xyg采纳,获得10
1秒前
小马甲应助xyg采纳,获得10
1秒前
Orange应助缥缈的涵菡采纳,获得10
1秒前
科研通AI6应助xyg采纳,获得10
1秒前
搜集达人应助xyg采纳,获得10
1秒前
Ava应助xyg采纳,获得10
2秒前
领导范儿应助xyg采纳,获得10
2秒前
科研通AI6应助xyg采纳,获得10
2秒前
烟花应助xyg采纳,获得10
2秒前
小二郎应助xyg采纳,获得10
2秒前
Atticus发布了新的文献求助30
2秒前
2秒前
合适丹秋发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
Ning完成签到,获得积分10
4秒前
叮咚鸡发布了新的文献求助10
4秒前
Hello应助放放采纳,获得10
4秒前
路旁小白发布了新的文献求助20
4秒前
甜美早晨完成签到,获得积分10
4秒前
瓜瓜完成签到 ,获得积分10
6秒前
li完成签到,获得积分20
6秒前
fff1发布了新的文献求助10
7秒前
黄油可颂发布了新的文献求助10
7秒前
7秒前
8秒前
打打应助kitty采纳,获得30
8秒前
8秒前
小野猪发布了新的文献求助10
8秒前
9秒前
9秒前
镜中人完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401