Development of Machine Learning–Based Models to Predict Treatment Response to Spinal Cord Stimulation

医学 逻辑回归 聚类分析 机器学习 回归 人工智能 队列 预测效度 评定量表 物理医学与康复 物理疗法 统计 内科学 计算机科学 数学 临床心理学
作者
Amir Hadanny,Tessa A. Harland,Olga Khazen,Marisa DiMarzio,Anthony M. Marchese,Ilknur Telkes,Vishad Sukul,Julie G. Pilitsis
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:90 (5): 523-532 被引量:11
标识
DOI:10.1227/neu.0000000000001855
摘要

Despite spinal cord stimulation's (SCS) proven efficacy, failure rates are high with no clear understanding of which patients benefit long term. Currently, patient selection for SCS is based on the subjective experience of the implanting physician.To develop machine learning (ML)-based predictive models of long-term SCS response.A combined unsupervised (clustering) and supervised (classification) ML technique was applied on a prospectively collected cohort of 151 patients, which included 31 features. Clusters identified using unsupervised K-means clustering were fitted with individualized predictive models of logistic regression, random forest, and XGBoost.Two distinct clusters were found, and patients in the cohorts significantly differed in age, duration of chronic pain, preoperative numeric rating scale, and preoperative pain catastrophizing scale scores. Using the 10 most influential features, logistic regression predictive models with a nested cross-validation demonstrated the highest overall performance with the area under the curve of 0.757 and 0.708 for each respective cluster.This combined unsupervised-supervised learning approach yielded high predictive performance, suggesting that advanced ML-derived approaches have potential to be used as a functional clinical tool to improve long-term SCS outcomes. Further studies are needed for optimization and external validation of these models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
亮liang完成签到,获得积分10
2秒前
HY关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
小马甲应助林北是派大星采纳,获得10
3秒前
小鱼干发布了新的文献求助10
3秒前
碧蓝丹烟发布了新的文献求助10
3秒前
4秒前
徐先生发布了新的文献求助10
4秒前
在水一方应助gleep1采纳,获得10
5秒前
科学发布了新的文献求助10
5秒前
larsy完成签到 ,获得积分10
5秒前
6秒前
6秒前
mo发布了新的文献求助10
6秒前
香蕉觅云应助fun采纳,获得10
7秒前
Mollymama发布了新的文献求助10
7秒前
7秒前
木易雨山发布了新的文献求助10
9秒前
陆杨婧完成签到,获得积分10
9秒前
9秒前
FEMTO发布了新的文献求助10
10秒前
传奇3应助奇奇淼采纳,获得10
10秒前
CJY发布了新的文献求助10
11秒前
lxl发布了新的文献求助10
11秒前
科目三应助糊涂的万采纳,获得10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
吕敬瑶发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593