清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Nonlinear Time Series Fuzzy Regression for Developing Explainable Consumer Preferences’ Models Based on Online Comments

模糊逻辑 计算机科学 偏爱 多项式回归 时间序列 人工智能 机器学习 回归分析 数学优化 数据挖掘 数学 统计
作者
Huimin Jiang,Farzad Sabetzadeh,Lin Zhijun,Huajun Tang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 4460-4470 被引量:1
标识
DOI:10.1109/tfuzz.2022.3153143
摘要

In modeling of consumer preferences based on online comments, nonlinearity and fuzziness exist in the relationship between the product design attribute and the consumer preference. On the other hand, consumer preferences are not static and changing over the time. Previous studies have proposed few approaches to model the variational consumer preferences based on online comments. However, the obtained models have black box problems and are not easy to be understood by humans as explicit models cannot be shown, which give rise to the research area of explainable artificial intelligence. Therefore, it is necessary to develop understandable and accurate consumer preferences’ models. In this article, a nonlinear time series fuzzy regression method is proposed to model the variational consumer preference based on online comments, which can generate a fuzzy dynamic consumer preference model with interactive terms, second-order and/or higher order terms. The datasets are first extracted from online comments using the sentiment analysis. Then, the polynomial structure of the fuzzy dynamic consumer preference model is established by using multiobjective chaos optimization algorithm. Then, the fuzzy regression method is used to allocate the fuzzy coefficients of each item of the model. Using sweeping robot as a case study, the validation results from the proposed approach are compared with those from fuzzy least squares regression, time series fuzzy least squares regression, fuzzy regression, and time series fuzzy regression, and it is found that the proposed approach performs better than the other four approaches in terms of mean relative errors and mean system credibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
herpes完成签到 ,获得积分0
3秒前
喜悦的唇彩完成签到,获得积分10
13秒前
13秒前
13秒前
woxinyouyou完成签到,获得积分0
16秒前
冷静的尔竹完成签到,获得积分10
22秒前
Amy关注了科研通微信公众号
25秒前
xiaowangwang完成签到 ,获得积分10
26秒前
creep2020完成签到,获得积分10
29秒前
muriel完成签到,获得积分0
29秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
佳宝(不可以喝但能吃完成签到,获得积分10
37秒前
c123完成签到 ,获得积分10
44秒前
49秒前
华仔应助爱学习的小马采纳,获得10
52秒前
Oliver完成签到 ,获得积分10
1分钟前
YZY完成签到 ,获得积分10
1分钟前
开心每一天完成签到 ,获得积分10
1分钟前
爱学习的小马完成签到,获得积分10
2分钟前
老石完成签到 ,获得积分10
2分钟前
科研通AI6应助诚心文博采纳,获得10
2分钟前
volunteer完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
luckzzz发布了新的文献求助10
3分钟前
felix发布了新的文献求助10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
luckzzz完成签到,获得积分10
3分钟前
felix完成签到,获得积分10
3分钟前
Criminology34应助felix采纳,获得10
3分钟前
3分钟前
晓凡发布了新的文献求助10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
77wlr完成签到,获得积分10
3分钟前
PeterLin发布了新的文献求助30
3分钟前
4分钟前
yolo完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
KiwizZ完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658250
求助须知:如何正确求助?哪些是违规求助? 4819267
关于积分的说明 15081119
捐赠科研通 4816778
什么是DOI,文献DOI怎么找? 2577629
邀请新用户注册赠送积分活动 1532533
关于科研通互助平台的介绍 1491200