Nonlinear Time Series Fuzzy Regression for Developing Explainable Consumer Preferences’ Models Based on Online Comments

模糊逻辑 计算机科学 偏爱 多项式回归 时间序列 人工智能 机器学习 回归分析 数学优化 数据挖掘 数学 统计
作者
Huimin Jiang,Farzad Sabetzadeh,Lin Zhijun,Huajun Tang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 4460-4470 被引量:1
标识
DOI:10.1109/tfuzz.2022.3153143
摘要

In modeling of consumer preferences based on online comments, nonlinearity and fuzziness exist in the relationship between the product design attribute and the consumer preference. On the other hand, consumer preferences are not static and changing over the time. Previous studies have proposed few approaches to model the variational consumer preferences based on online comments. However, the obtained models have black box problems and are not easy to be understood by humans as explicit models cannot be shown, which give rise to the research area of explainable artificial intelligence. Therefore, it is necessary to develop understandable and accurate consumer preferences’ models. In this article, a nonlinear time series fuzzy regression method is proposed to model the variational consumer preference based on online comments, which can generate a fuzzy dynamic consumer preference model with interactive terms, second-order and/or higher order terms. The datasets are first extracted from online comments using the sentiment analysis. Then, the polynomial structure of the fuzzy dynamic consumer preference model is established by using multiobjective chaos optimization algorithm. Then, the fuzzy regression method is used to allocate the fuzzy coefficients of each item of the model. Using sweeping robot as a case study, the validation results from the proposed approach are compared with those from fuzzy least squares regression, time series fuzzy least squares regression, fuzzy regression, and time series fuzzy regression, and it is found that the proposed approach performs better than the other four approaches in terms of mean relative errors and mean system credibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘丰铭发布了新的文献求助10
刚刚
SciGPT应助jhonnyhuang采纳,获得10
刚刚
刚刚
2秒前
sunshine完成签到,获得积分10
2秒前
风清扬发布了新的文献求助10
2秒前
科研通AI6应助结实的栾采纳,获得10
2秒前
AskNature完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
13完成签到,获得积分20
3秒前
4秒前
4秒前
358489228发布了新的文献求助10
4秒前
Xiao完成签到,获得积分10
4秒前
Katherine完成签到 ,获得积分10
5秒前
Akim应助细心的飞柏采纳,获得10
5秒前
5秒前
默默发布了新的文献求助10
5秒前
6秒前
酷波er应助DTS采纳,获得10
6秒前
lixue发布了新的文献求助10
7秒前
7秒前
游大侠完成签到,获得积分10
7秒前
岑岑完成签到 ,获得积分10
7秒前
虎啊虎啊发布了新的文献求助10
8秒前
8秒前
Sandewna完成签到,获得积分20
8秒前
科研通AI6应助航迹云采纳,获得10
9秒前
标致书易完成签到,获得积分10
9秒前
10秒前
10秒前
dyw发布了新的文献求助10
11秒前
wen发布了新的文献求助10
11秒前
ZQH发布了新的文献求助10
11秒前
张雪芹完成签到,获得积分10
12秒前
一二完成签到,获得积分20
13秒前
14秒前
活力的妙之完成签到 ,获得积分10
14秒前
Never stall发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802