已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nonlinear Time Series Fuzzy Regression for Developing Explainable Consumer Preferences’ Models Based on Online Comments

模糊逻辑 计算机科学 偏爱 多项式回归 时间序列 人工智能 机器学习 回归分析 数学优化 数据挖掘 数学 统计
作者
Huimin Jiang,Farzad Sabetzadeh,Lin Zhijun,Huajun Tang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 4460-4470 被引量:1
标识
DOI:10.1109/tfuzz.2022.3153143
摘要

In modeling of consumer preferences based on online comments, nonlinearity and fuzziness exist in the relationship between the product design attribute and the consumer preference. On the other hand, consumer preferences are not static and changing over the time. Previous studies have proposed few approaches to model the variational consumer preferences based on online comments. However, the obtained models have black box problems and are not easy to be understood by humans as explicit models cannot be shown, which give rise to the research area of explainable artificial intelligence. Therefore, it is necessary to develop understandable and accurate consumer preferences’ models. In this article, a nonlinear time series fuzzy regression method is proposed to model the variational consumer preference based on online comments, which can generate a fuzzy dynamic consumer preference model with interactive terms, second-order and/or higher order terms. The datasets are first extracted from online comments using the sentiment analysis. Then, the polynomial structure of the fuzzy dynamic consumer preference model is established by using multiobjective chaos optimization algorithm. Then, the fuzzy regression method is used to allocate the fuzzy coefficients of each item of the model. Using sweeping robot as a case study, the validation results from the proposed approach are compared with those from fuzzy least squares regression, time series fuzzy least squares regression, fuzzy regression, and time series fuzzy regression, and it is found that the proposed approach performs better than the other four approaches in terms of mean relative errors and mean system credibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
米线儿完成签到,获得积分10
3秒前
4秒前
赘婿应助闪闪的熠彤采纳,获得10
5秒前
cyt9999发布了新的文献求助10
5秒前
胡图图完成签到 ,获得积分10
6秒前
能干的雨完成签到 ,获得积分10
6秒前
6秒前
7秒前
jasmine完成签到,获得积分10
7秒前
酷波er应助瀚泛采纳,获得10
7秒前
8秒前
cyanpomelo完成签到,获得积分10
8秒前
执念完成签到 ,获得积分10
8秒前
金超智完成签到,获得积分10
9秒前
雾气海蓝完成签到 ,获得积分10
10秒前
11秒前
w1x2123完成签到,获得积分10
13秒前
meimei完成签到 ,获得积分10
14秒前
cc123完成签到,获得积分10
14秒前
Fawn发布了新的文献求助10
15秒前
一个可爱的人完成签到 ,获得积分10
16秒前
gezid完成签到 ,获得积分10
17秒前
王婧萱萱萱完成签到 ,获得积分10
17秒前
科研小趴菜完成签到 ,获得积分10
24秒前
SCI完成签到 ,获得积分10
27秒前
goodltl完成签到 ,获得积分10
27秒前
ZhaoCun完成签到 ,获得积分10
28秒前
wxh完成签到 ,获得积分10
30秒前
养花低手完成签到 ,获得积分10
30秒前
上上签完成签到,获得积分10
30秒前
忧伤的心锁完成签到 ,获得积分10
31秒前
31秒前
zzzy完成签到 ,获得积分10
31秒前
32秒前
YYY完成签到 ,获得积分10
32秒前
王子娇完成签到 ,获得积分10
32秒前
又村完成签到 ,获得积分10
33秒前
huihui完成签到,获得积分10
36秒前
严明完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925547
求助须知:如何正确求助?哪些是违规求助? 4195847
关于积分的说明 13031037
捐赠科研通 3967326
什么是DOI,文献DOI怎么找? 2174599
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101517