Nonlinear Time Series Fuzzy Regression for Developing Explainable Consumer Preferences’ Models Based on Online Comments

模糊逻辑 计算机科学 偏爱 多项式回归 时间序列 人工智能 机器学习 回归分析 数学优化 数据挖掘 数学 统计
作者
Huimin Jiang,Farzad Sabetzadeh,Lin Zhijun,Huajun Tang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 4460-4470 被引量:1
标识
DOI:10.1109/tfuzz.2022.3153143
摘要

In modeling of consumer preferences based on online comments, nonlinearity and fuzziness exist in the relationship between the product design attribute and the consumer preference. On the other hand, consumer preferences are not static and changing over the time. Previous studies have proposed few approaches to model the variational consumer preferences based on online comments. However, the obtained models have black box problems and are not easy to be understood by humans as explicit models cannot be shown, which give rise to the research area of explainable artificial intelligence. Therefore, it is necessary to develop understandable and accurate consumer preferences’ models. In this article, a nonlinear time series fuzzy regression method is proposed to model the variational consumer preference based on online comments, which can generate a fuzzy dynamic consumer preference model with interactive terms, second-order and/or higher order terms. The datasets are first extracted from online comments using the sentiment analysis. Then, the polynomial structure of the fuzzy dynamic consumer preference model is established by using multiobjective chaos optimization algorithm. Then, the fuzzy regression method is used to allocate the fuzzy coefficients of each item of the model. Using sweeping robot as a case study, the validation results from the proposed approach are compared with those from fuzzy least squares regression, time series fuzzy least squares regression, fuzzy regression, and time series fuzzy regression, and it is found that the proposed approach performs better than the other four approaches in terms of mean relative errors and mean system credibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷勤的若蕊关注了科研通微信公众号
3秒前
4秒前
852应助狂犬喵采纳,获得10
10秒前
10秒前
文献看完了吗完成签到 ,获得积分10
11秒前
焱焱不忘完成签到 ,获得积分0
11秒前
WW完成签到,获得积分10
12秒前
完美世界应助zzzzzz采纳,获得10
13秒前
14秒前
笨笨幼蓉完成签到,获得积分10
15秒前
16秒前
小茉莉发布了新的文献求助10
17秒前
昏睡的白桃完成签到,获得积分10
17秒前
MM发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
tim发布了新的文献求助10
20秒前
赘婿应助ebby采纳,获得10
20秒前
22秒前
红烧肉耶完成签到 ,获得积分10
22秒前
时光悠应助中中中中中采纳,获得30
23秒前
xxfsx应助李思雨采纳,获得10
24秒前
小蘑菇应助啦啦啦啦啦采纳,获得10
24秒前
env发布了新的文献求助30
27秒前
sxmt123456789发布了新的文献求助10
27秒前
Oatmeal5888完成签到,获得积分10
27秒前
冷酷的松思完成签到,获得积分10
28秒前
30秒前
31秒前
真白硝子完成签到,获得积分10
32秒前
33秒前
ebby发布了新的文献求助10
33秒前
34秒前
35秒前
36秒前
Owen应助joysa采纳,获得10
37秒前
格桑花完成签到,获得积分10
37秒前
39秒前
星辰大海应助山水采纳,获得10
40秒前
env完成签到,获得积分10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304