Nonlinear Time Series Fuzzy Regression for Developing Explainable Consumer Preferences’ Models Based on Online Comments

模糊逻辑 计算机科学 偏爱 多项式回归 时间序列 人工智能 机器学习 回归分析 数学优化 数据挖掘 数学 统计
作者
Huimin Jiang,Farzad Sabetzadeh,Lin Zhijun,Huajun Tang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 4460-4470 被引量:1
标识
DOI:10.1109/tfuzz.2022.3153143
摘要

In modeling of consumer preferences based on online comments, nonlinearity and fuzziness exist in the relationship between the product design attribute and the consumer preference. On the other hand, consumer preferences are not static and changing over the time. Previous studies have proposed few approaches to model the variational consumer preferences based on online comments. However, the obtained models have black box problems and are not easy to be understood by humans as explicit models cannot be shown, which give rise to the research area of explainable artificial intelligence. Therefore, it is necessary to develop understandable and accurate consumer preferences’ models. In this article, a nonlinear time series fuzzy regression method is proposed to model the variational consumer preference based on online comments, which can generate a fuzzy dynamic consumer preference model with interactive terms, second-order and/or higher order terms. The datasets are first extracted from online comments using the sentiment analysis. Then, the polynomial structure of the fuzzy dynamic consumer preference model is established by using multiobjective chaos optimization algorithm. Then, the fuzzy regression method is used to allocate the fuzzy coefficients of each item of the model. Using sweeping robot as a case study, the validation results from the proposed approach are compared with those from fuzzy least squares regression, time series fuzzy least squares regression, fuzzy regression, and time series fuzzy regression, and it is found that the proposed approach performs better than the other four approaches in terms of mean relative errors and mean system credibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福尔丘发布了新的文献求助10
1秒前
han完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
tjy发布了新的文献求助10
2秒前
3秒前
4秒前
tansl1989发布了新的文献求助10
4秒前
哈哈发布了新的文献求助10
5秒前
ava完成签到,获得积分10
5秒前
5秒前
132324完成签到,获得积分10
6秒前
任_完成签到,获得积分10
6秒前
小董继续努力完成签到,获得积分10
6秒前
养鸟的人完成签到,获得积分10
6秒前
淼队发布了新的文献求助20
9秒前
9秒前
科研通AI5应助任_采纳,获得30
10秒前
焦函发布了新的文献求助10
10秒前
zhoushishan完成签到,获得积分10
11秒前
云墨完成签到,获得积分10
12秒前
俊秀的念烟完成签到,获得积分10
12秒前
科研通AI6应助研友_nqBP4Z采纳,获得10
15秒前
16秒前
tianyue完成签到,获得积分10
17秒前
chenpitang关注了科研通微信公众号
17秒前
18秒前
woxiangbiye发布了新的文献求助10
19秒前
发嗲的冬灵完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
wop111应助cssfsa采纳,获得50
21秒前
21秒前
小马甲应助唯手熟尔采纳,获得10
21秒前
吃草草没发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
25秒前
li完成签到,获得积分10
26秒前
PPP发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607