Nonlinear Time Series Fuzzy Regression for Developing Explainable Consumer Preferences’ Models Based on Online Comments

模糊逻辑 计算机科学 偏爱 多项式回归 时间序列 人工智能 机器学习 回归分析 数学优化 数据挖掘 数学 统计
作者
Huimin Jiang,Farzad Sabetzadeh,Lin Zhijun,Huajun Tang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 4460-4470 被引量:1
标识
DOI:10.1109/tfuzz.2022.3153143
摘要

In modeling of consumer preferences based on online comments, nonlinearity and fuzziness exist in the relationship between the product design attribute and the consumer preference. On the other hand, consumer preferences are not static and changing over the time. Previous studies have proposed few approaches to model the variational consumer preferences based on online comments. However, the obtained models have black box problems and are not easy to be understood by humans as explicit models cannot be shown, which give rise to the research area of explainable artificial intelligence. Therefore, it is necessary to develop understandable and accurate consumer preferences’ models. In this article, a nonlinear time series fuzzy regression method is proposed to model the variational consumer preference based on online comments, which can generate a fuzzy dynamic consumer preference model with interactive terms, second-order and/or higher order terms. The datasets are first extracted from online comments using the sentiment analysis. Then, the polynomial structure of the fuzzy dynamic consumer preference model is established by using multiobjective chaos optimization algorithm. Then, the fuzzy regression method is used to allocate the fuzzy coefficients of each item of the model. Using sweeping robot as a case study, the validation results from the proposed approach are compared with those from fuzzy least squares regression, time series fuzzy least squares regression, fuzzy regression, and time series fuzzy regression, and it is found that the proposed approach performs better than the other four approaches in terms of mean relative errors and mean system credibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mmol发布了新的文献求助10
1秒前
xiuuu完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
充电宝应助彩色海冬采纳,获得10
1秒前
乐乐应助我爱帆帆采纳,获得10
1秒前
科研通AI6应助周末万岁采纳,获得10
2秒前
2秒前
2秒前
充电宝应助花楹采纳,获得10
2秒前
橙教授发布了新的文献求助10
3秒前
凭什么完成签到,获得积分10
3秒前
忐忑的烤鸡完成签到,获得积分10
3秒前
小池完成签到,获得积分10
4秒前
精明一寡完成签到,获得积分10
4秒前
4秒前
上官若男应助神勇若雁采纳,获得10
4秒前
4秒前
阿胡发布了新的文献求助10
4秒前
bewnfyibwuyi发布了新的文献求助10
4秒前
科研通AI6应助Gloven采纳,获得30
4秒前
orixero应助寒月如雪采纳,获得10
4秒前
永远55度完成签到,获得积分10
5秒前
谦让的仇血完成签到,获得积分10
5秒前
深情安青应助血小板采纳,获得10
5秒前
6秒前
6秒前
情怀应助简单馒头采纳,获得10
6秒前
7秒前
gggghhhh发布了新的文献求助10
7秒前
永远55度发布了新的文献求助10
7秒前
默默幼南完成签到,获得积分10
8秒前
今天没有雨完成签到,获得积分10
8秒前
8秒前
潇涯应助想学习采纳,获得10
9秒前
科研通AI6应助mmol采纳,获得10
10秒前
lancelot完成签到,获得积分10
10秒前
热心的凡之完成签到,获得积分10
11秒前
11秒前
y1j发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531325
求助须知:如何正确求助?哪些是违规求助? 4620210
关于积分的说明 14572130
捐赠科研通 4559739
什么是DOI,文献DOI怎么找? 2498562
邀请新用户注册赠送积分活动 1478528
关于科研通互助平台的介绍 1449968