Nonlinear Time Series Fuzzy Regression for Developing Explainable Consumer Preferences’ Models Based on Online Comments

模糊逻辑 计算机科学 偏爱 多项式回归 时间序列 人工智能 机器学习 回归分析 数学优化 数据挖掘 数学 统计
作者
Huimin Jiang,Farzad Sabetzadeh,Lin Zhijun,Huajun Tang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 4460-4470 被引量:1
标识
DOI:10.1109/tfuzz.2022.3153143
摘要

In modeling of consumer preferences based on online comments, nonlinearity and fuzziness exist in the relationship between the product design attribute and the consumer preference. On the other hand, consumer preferences are not static and changing over the time. Previous studies have proposed few approaches to model the variational consumer preferences based on online comments. However, the obtained models have black box problems and are not easy to be understood by humans as explicit models cannot be shown, which give rise to the research area of explainable artificial intelligence. Therefore, it is necessary to develop understandable and accurate consumer preferences’ models. In this article, a nonlinear time series fuzzy regression method is proposed to model the variational consumer preference based on online comments, which can generate a fuzzy dynamic consumer preference model with interactive terms, second-order and/or higher order terms. The datasets are first extracted from online comments using the sentiment analysis. Then, the polynomial structure of the fuzzy dynamic consumer preference model is established by using multiobjective chaos optimization algorithm. Then, the fuzzy regression method is used to allocate the fuzzy coefficients of each item of the model. Using sweeping robot as a case study, the validation results from the proposed approach are compared with those from fuzzy least squares regression, time series fuzzy least squares regression, fuzzy regression, and time series fuzzy regression, and it is found that the proposed approach performs better than the other four approaches in terms of mean relative errors and mean system credibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激昂的如柏完成签到,获得积分10
2秒前
健壮惋清完成签到 ,获得积分10
2秒前
MRJJJJ完成签到,获得积分10
2秒前
坚定尔蓝完成签到,获得积分10
5秒前
扣子完成签到 ,获得积分10
6秒前
Echo1128完成签到 ,获得积分10
8秒前
花生糕完成签到,获得积分10
10秒前
12秒前
14秒前
nature完成签到,获得积分10
14秒前
liujianxin发布了新的文献求助10
16秒前
JOKY完成签到 ,获得积分10
18秒前
Arisqotle完成签到 ,获得积分10
20秒前
20秒前
稳重母鸡完成签到 ,获得积分10
21秒前
香蕉觅云应助liujianxin采纳,获得10
21秒前
24秒前
纯真怜梦发布了新的文献求助10
24秒前
申燕婷完成签到 ,获得积分10
25秒前
long完成签到 ,获得积分10
26秒前
银子吃好的完成签到,获得积分10
28秒前
没羽箭发布了新的文献求助10
28秒前
学医不要停完成签到,获得积分10
28秒前
一直成长完成签到,获得积分10
29秒前
隐形曼青应助小杨采纳,获得10
30秒前
博慧完成签到 ,获得积分10
30秒前
shelly7788完成签到 ,获得积分10
33秒前
自由自在完成签到,获得积分10
34秒前
汉堡包应助yue采纳,获得10
35秒前
KadoreC完成签到 ,获得积分10
37秒前
苗条白枫完成签到 ,获得积分10
38秒前
xiaofenzi完成签到,获得积分10
38秒前
39秒前
39秒前
怡然含桃完成签到 ,获得积分10
40秒前
乐观文龙完成签到,获得积分10
41秒前
Mireia完成签到,获得积分10
41秒前
小杨发布了新的文献求助10
42秒前
霸气曼雁发布了新的文献求助10
44秒前
古卡可可完成签到 ,获得积分10
47秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378458
求助须知:如何正确求助?哪些是违规求助? 4502884
关于积分的说明 14014658
捐赠科研通 4411499
什么是DOI,文献DOI怎么找? 2423316
邀请新用户注册赠送积分活动 1416206
关于科研通互助平台的介绍 1393644