Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities

农业 粮食安全 风险分析(工程) 意外后果 业务 计算机科学 环境资源管理 经济 生态学 政治学 生物 法学
作者
Asaf Tzachor,Medha Devare,B. R. King,Shahar Avin,Seán Ó hÉigeartaigh
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (2): 104-109 被引量:58
标识
DOI:10.1038/s42256-022-00440-4
摘要

Global agriculture is poised to benefit from the rapid advance and diffusion of artificial intelligence (AI) technologies. AI in agriculture could improve crop management and agricultural productivity through plant phenotyping, rapid diagnosis of plant disease, efficient application of agrochemicals and assistance for growers with location-relevant agronomic advice. However, the ramifications of machine learning (ML) models, expert systems and autonomous machines for farms, farmers and food security are poorly understood and under-appreciated. Here, we consider systemic risk factors of AI in agriculture. Namely, we review risks relating to interoperability, reliability and relevance of agricultural data, unintended socio-ecological consequences resulting from ML models optimized for yields, and safety and security concerns associated with deployment of ML platforms at scale. As a response, we suggest risk-mitigation measures, including inviting rural anthropologists and applied ecologists into the technology design process, applying frameworks for responsible and human-centred innovation, setting data cooperatives for improved data transparency and ownership rights, and initial deployment of agricultural AI in digital sandboxes. Machine learning applications in agriculture can bring many benefits in crop management and productivity. However, to avoid harmful effects of a new round of technological modernization, fuelled by AI, a thorough risk assessment is required, to review and mitigate risks such as unintended socio-ecological consequences and security concerns associated with applying machine learning models at scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
支安白发布了新的文献求助10
1秒前
Jia应助自觉松鼠采纳,获得10
2秒前
2秒前
2秒前
splaker7完成签到,获得积分10
2秒前
guo应助居崽采纳,获得20
2秒前
2秒前
123完成签到,获得积分20
3秒前
搞怪的紫易完成签到,获得积分10
3秒前
我是老大应助温柔的墙采纳,获得10
3秒前
NexusExplorer应助小陈要努力采纳,获得10
3秒前
小马甲应助YJ采纳,获得10
4秒前
4秒前
丁峰完成签到,获得积分10
4秒前
4秒前
5秒前
贝肯尼发布了新的文献求助10
5秒前
CodeCraft应助小子弹采纳,获得10
5秒前
5秒前
冷傲的荧荧完成签到,获得积分10
6秒前
Keycy发布了新的文献求助40
6秒前
7秒前
7秒前
7秒前
Lucas应助青一采纳,获得10
7秒前
小二郎应助jackycas采纳,获得10
7秒前
7秒前
7秒前
fyl发布了新的文献求助10
9秒前
hahaha完成签到 ,获得积分10
9秒前
好梦完成签到 ,获得积分10
9秒前
大模型应助Nugget采纳,获得10
9秒前
葱花儿完成签到,获得积分10
9秒前
幽默千秋发布了新的文献求助10
9秒前
情怀应助1056720198采纳,获得10
9秒前
今后应助梅思双采纳,获得20
9秒前
pluto应助liyali采纳,获得10
9秒前
9秒前
小怪完成签到,获得积分10
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3442812
求助须知:如何正确求助?哪些是违规求助? 3039049
关于积分的说明 8974956
捐赠科研通 2727539
什么是DOI,文献DOI怎么找? 1496035
科研通“疑难数据库(出版商)”最低求助积分说明 691392
邀请新用户注册赠送积分活动 688601