ST-GSP

计算机科学 代表(政治) 背景(考古学) 人工智能 维数(图论) 流量(数学) 序列(生物学) 信息流 区间(图论) 深度学习 职位(财务) 地理 数学 哲学 纯数学 法学 考古 经济 几何学 组合数学 政治 生物 遗传学 语言学 政治学 财务
作者
Liang Zhao,Min Gao,Zongwei Wang
标识
DOI:10.1145/3488560.3498444
摘要

Urban flow prediction plays a crucial role in public transportation management and smart city construction. Although previous studies have achieved success in integrating spatial-temporal information to some extents, those models lack thoughtful consideration on global information and positional information in the temporal dimension, which can be summarized by three aspects: a) The models do not consider the relative position information of time axis, resulting in that the position features of flow maps are not effectively learned. b) They overlook the correlation among temporal dependencies of different scales, which lead to inaccurate global information representation. c) Those models only predict the flow map at the end of time sequence other than more flow maps before that, which results in neglecting parts of temporal features in the learning process. To solve the problems, we propose a novel model, Spatial-Temporal Global Semantic representation learning for urban flow Prediction (ST-GSP) in this paper. Specifically, for a), we design a semantic flow encoder that extracts relative positional information of time. Besides, the encoder captures the spatial dependencies and external factors of urban flow at each time interval. For b), we model the correlation among temporal dependencies of different scales simultaneously by using the multi-head self-attention mechanism, which can learn the global temporal dependencies. For c), inspired by the idea of self-supervised learning, we mask an urban flow map on the time sequence and predict it to pre-train a deep bidirectional learning model to catch the representation from its context. We conduct extensive experiments on two types of urban flows in Beijing and New York City to show that the proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明的沅应助realtimes采纳,获得10
2秒前
4秒前
5秒前
木子李发布了新的文献求助30
8秒前
汉堡包应助dasdwdasd采纳,获得10
8秒前
卜懂得发布了新的文献求助10
9秒前
10秒前
Orange应助梅伊斯采纳,获得10
11秒前
MK完成签到,获得积分10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
yar应助科研通管家采纳,获得10
12秒前
cindy发布了新的文献求助10
16秒前
gar发布了新的文献求助10
17秒前
老迟到的金鱼应助dentistx采纳,获得10
18秒前
19秒前
dasdwdasd完成签到,获得积分20
20秒前
小巧的牛排完成签到 ,获得积分10
21秒前
ZGZ123发布了新的文献求助15
22秒前
努力哥完成签到,获得积分10
22秒前
24秒前
dasdwdasd发布了新的文献求助10
24秒前
bkagyin应助内丹翠采纳,获得10
24秒前
25秒前
慕青应助曼曼采纳,获得10
26秒前
26秒前
笑南发布了新的文献求助10
26秒前
压垮稻草的最后一只骆驼完成签到,获得积分10
27秒前
jiajiajai完成签到,获得积分10
27秒前
DijiaXu应助gar采纳,获得30
28秒前
堇笙vv发布了新的文献求助10
29秒前
大力的怜梦完成签到 ,获得积分10
29秒前
阿良发布了新的文献求助10
29秒前
31秒前
tzj完成签到,获得积分10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519700
关于积分的说明 11199305
捐赠科研通 3256034
什么是DOI,文献DOI怎么找? 1798049
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305