ST-GSP

计算机科学 代表(政治) 背景(考古学) 人工智能 维数(图论) 流量(数学) 序列(生物学) 信息流 区间(图论) 深度学习 职位(财务) 地理 数学 哲学 纯数学 法学 考古 经济 几何学 组合数学 政治 生物 遗传学 语言学 政治学 财务
作者
Liang Zhao,Min Gao,Zongwei Wang
标识
DOI:10.1145/3488560.3498444
摘要

Urban flow prediction plays a crucial role in public transportation management and smart city construction. Although previous studies have achieved success in integrating spatial-temporal information to some extents, those models lack thoughtful consideration on global information and positional information in the temporal dimension, which can be summarized by three aspects: a) The models do not consider the relative position information of time axis, resulting in that the position features of flow maps are not effectively learned. b) They overlook the correlation among temporal dependencies of different scales, which lead to inaccurate global information representation. c) Those models only predict the flow map at the end of time sequence other than more flow maps before that, which results in neglecting parts of temporal features in the learning process. To solve the problems, we propose a novel model, Spatial-Temporal Global Semantic representation learning for urban flow Prediction (ST-GSP) in this paper. Specifically, for a), we design a semantic flow encoder that extracts relative positional information of time. Besides, the encoder captures the spatial dependencies and external factors of urban flow at each time interval. For b), we model the correlation among temporal dependencies of different scales simultaneously by using the multi-head self-attention mechanism, which can learn the global temporal dependencies. For c), inspired by the idea of self-supervised learning, we mask an urban flow map on the time sequence and predict it to pre-train a deep bidirectional learning model to catch the representation from its context. We conduct extensive experiments on two types of urban flows in Beijing and New York City to show that the proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周宇飞发布了新的文献求助20
刚刚
JJJXG完成签到,获得积分10
刚刚
英姑应助rio采纳,获得10
1秒前
1秒前
乐乐应助清脆的书桃采纳,获得20
1秒前
1秒前
1秒前
跳跳糖完成签到 ,获得积分10
1秒前
顺心寄文完成签到 ,获得积分10
3秒前
3秒前
3秒前
fanny完成签到,获得积分10
4秒前
4秒前
4秒前
好好学习发布了新的文献求助30
5秒前
失眠的汽车完成签到,获得积分10
5秒前
5秒前
西瓜发布了新的文献求助10
6秒前
6秒前
王小帅ok发布了新的文献求助10
6秒前
Sandy完成签到,获得积分10
7秒前
SciGPT应助小张采纳,获得10
7秒前
8秒前
pzh发布了新的文献求助10
8秒前
8秒前
迟梦琪发布了新的文献求助10
8秒前
艾科研发布了新的文献求助10
9秒前
CCR发布了新的文献求助10
9秒前
科研通AI6应助yanziwu94采纳,获得10
9秒前
9秒前
9秒前
顺心紫翠完成签到,获得积分10
10秒前
10秒前
ding应助Frose采纳,获得10
10秒前
科研通AI5应助西瓜采纳,获得10
10秒前
SciGPT应助Ccc采纳,获得10
11秒前
香蕉觅云应助Saya采纳,获得10
11秒前
昏睡的半莲完成签到,获得积分10
11秒前
英俊的铭应助大宝君采纳,获得20
11秒前
1101592875发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543