ST-GSP

计算机科学 代表(政治) 背景(考古学) 人工智能 维数(图论) 流量(数学) 序列(生物学) 信息流 区间(图论) 深度学习 职位(财务) 地理 数学 哲学 纯数学 法学 考古 经济 几何学 组合数学 政治 生物 遗传学 语言学 政治学 财务
作者
Liang Zhao,Min Gao,Zongwei Wang
标识
DOI:10.1145/3488560.3498444
摘要

Urban flow prediction plays a crucial role in public transportation management and smart city construction. Although previous studies have achieved success in integrating spatial-temporal information to some extents, those models lack thoughtful consideration on global information and positional information in the temporal dimension, which can be summarized by three aspects: a) The models do not consider the relative position information of time axis, resulting in that the position features of flow maps are not effectively learned. b) They overlook the correlation among temporal dependencies of different scales, which lead to inaccurate global information representation. c) Those models only predict the flow map at the end of time sequence other than more flow maps before that, which results in neglecting parts of temporal features in the learning process. To solve the problems, we propose a novel model, Spatial-Temporal Global Semantic representation learning for urban flow Prediction (ST-GSP) in this paper. Specifically, for a), we design a semantic flow encoder that extracts relative positional information of time. Besides, the encoder captures the spatial dependencies and external factors of urban flow at each time interval. For b), we model the correlation among temporal dependencies of different scales simultaneously by using the multi-head self-attention mechanism, which can learn the global temporal dependencies. For c), inspired by the idea of self-supervised learning, we mask an urban flow map on the time sequence and predict it to pre-train a deep bidirectional learning model to catch the representation from its context. We conduct extensive experiments on two types of urban flows in Beijing and New York City to show that the proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qsmei2020发布了新的文献求助10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
Leif应助科研通管家采纳,获得10
刚刚
shouyu29应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
细心觅风完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
人福药业应助Sunrise采纳,获得10
1秒前
科研人完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
bkagyin应助Mr_Hao采纳,获得20
2秒前
研友_VZG7GZ应助无辜洋葱采纳,获得10
2秒前
2秒前
李李完成签到,获得积分10
3秒前
超级水壶发布了新的文献求助10
3秒前
3秒前
3秒前
张自信发布了新的文献求助10
5秒前
开灯人和关灯人完成签到,获得积分10
5秒前
调研昵称发布了新的文献求助10
5秒前
5秒前
5秒前
华仔应助qiqi采纳,获得10
6秒前
Rebecca完成签到,获得积分10
6秒前
6秒前
7秒前
Mlwwq发布了新的文献求助10
7秒前
领导范儿应助长情洙采纳,获得10
7秒前
洋洋完成签到,获得积分20
8秒前
Owen应助WY采纳,获得30
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762