iGRLCDA: identifying circRNA–disease association based on graph representation learning

计算机科学 随机森林 计算生物学 深度学习 图形 人工智能 特征学习 环状RNA 非编码RNA 核糖核酸 机器学习 理论计算机科学 基因 生物 遗传学
作者
Han-Yuan Zhang,Lei Wang,Zhu‐Hong You,Lun Hu,Bo-Wei Zhao,Zhengwei Li,Yangming Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:25
标识
DOI:10.1093/bib/bbac083
摘要

While the technologies of ribonucleic acid-sequence (RNA-seq) and transcript assembly analysis have continued to improve, a novel topology of RNA transcript was uncovered in the last decade and is called circular RNA (circRNA). Recently, researchers have revealed that they compete with messenger RNA (mRNA) and long noncoding for combining with microRNA in gene regulation. Therefore, circRNA was assumed to be associated with complex disease and discovering the relationship between them would contribute to medical research. However, the work of identifying the association between circRNA and disease in vitro takes a long time and usually without direction. During these years, more and more associations were verified by experiments. Hence, we proposed a computational method named identifying circRNA-disease association based on graph representation learning (iGRLCDA) for the prediction of the potential association of circRNA and disease, which utilized a deep learning model of graph convolution network (GCN) and graph factorization (GF). In detail, iGRLCDA first derived the hidden feature of known associations between circRNA and disease using the Gaussian interaction profile (GIP) kernel combined with disease semantic information to form a numeric descriptor. After that, it further used the deep learning model of GCN and GF to extract hidden features from the descriptor. Finally, the random forest classifier is introduced to identify the potential circRNA-disease association. The five-fold cross-validation of iGRLCDA shows strong competitiveness in comparison with other excellent prediction models at the gold standard data and achieved an average area under the receiver operating characteristic curve of 0.9289 and an area under the precision-recall curve of 0.9377. On reviewing the prediction results from the relevant literature, 22 of the top 30 predicted circRNA-disease associations were noted in recent published papers. These exceptional results make us believe that iGRLCDA can provide reliable circRNA-disease associations for medical research and reduce the blindness of wet-lab experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxx发布了新的文献求助40
1秒前
1秒前
超级的凡完成签到,获得积分10
2秒前
qqj发布了新的文献求助10
3秒前
3秒前
5秒前
灵巧坤发布了新的文献求助10
6秒前
6秒前
7秒前
金爱玲完成签到,获得积分20
8秒前
cl发布了新的文献求助10
9秒前
cjj发布了新的文献求助10
9秒前
所所应助曹佳琦采纳,获得10
10秒前
10秒前
12秒前
小轩完成签到,获得积分10
12秒前
徐慧发布了新的文献求助10
13秒前
科研通AI2S应助cjj采纳,获得10
14秒前
17秒前
北念霜oD4发布了新的文献求助20
17秒前
跳跳虎完成签到 ,获得积分10
18秒前
pluto应助qqj采纳,获得10
18秒前
静静发布了新的文献求助50
20秒前
23秒前
24秒前
金爱玲关注了科研通微信公众号
26秒前
大力问晴发布了新的文献求助10
26秒前
一只想做科研的狗完成签到,获得积分10
27秒前
梦羽发布了新的文献求助10
27秒前
极品男大发布了新的文献求助10
28秒前
小马甲应助cjj采纳,获得10
28秒前
29秒前
CipherSage应助KjLumos采纳,获得10
30秒前
30秒前
虚灵应助十三采纳,获得10
30秒前
33秒前
斯文败类应助夏夏采纳,获得10
33秒前
34秒前
神经脊柱与周围神经完成签到,获得积分10
34秒前
传奇3应助雨淋沐风采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766760
求助须知:如何正确求助?哪些是违规求助? 3311230
关于积分的说明 10157746
捐赠科研通 3026288
什么是DOI,文献DOI怎么找? 1661050
邀请新用户注册赠送积分活动 793853
科研通“疑难数据库(出版商)”最低求助积分说明 755838