COVID-19 CT image denoising algorithm based on adaptive threshold and optimized weighted median filter

脉冲噪声 中值滤波器 降噪 人工智能 算法 计算机科学 噪音(视频) 数学 模式识别(心理学) 滤波器(信号处理) 自适应滤波器 计算机视觉 图像(数学) 图像处理 像素
作者
Shuli Guo,Guowei Wang,Lina Han,Xiaowei Song,Wentao Yang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:75: 103552-103552 被引量:33
标识
DOI:10.1016/j.bspc.2022.103552
摘要

CT image of COVID-19 is disturbed by impulse noise during transmission and acquisition. Aiming at the problem that the early lesions of COVID-19 are not obvious and the density is low, which is easy to confuse with noise. A median filtering algorithm based on adaptive two-stage threshold is proposed to improve the accuracy for noise detection. In the advanced stage of ground-glass lesion, the density is uneven and the boundary is unclear. It has similar gray value to the CT images of suspected COVID-19 cases such as adenovirus pneumonia and mycoplasma pneumonia (reticular shadow and strip shadow). Aiming at the problem that the traditional weighted median filter has low contrast and fuzzy boundary, an adaptive weighted median filter image denoising method based on hybrid genetic algorithm is proposed. The weighted denoising parameters can adaptively change according to the detailed information of lung lobes and ground-glass lesions, and it can adaptively match the cross and mutation probability of genetic combined with the steady-state regional population density, so as to obtain a more accurate COVID-19 denoised image with relatively few iterations. The simulation results show that the improved algorithm under different density of impulse noise is significantly better than other algorithms in peak signal-to-noise ratio (PSNR), image enhancement factor (IEF) and mean absolute error (MSE). While protecting the details of lesions, it enhances the ability of image denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到,获得积分10
1秒前
1秒前
荧荧荧发布了新的文献求助10
2秒前
小豆芽发布了新的文献求助10
3秒前
wqw发布了新的文献求助30
4秒前
镁铝完成签到,获得积分20
5秒前
5秒前
aaaaaa发布了新的文献求助10
6秒前
茹茹完成签到 ,获得积分10
6秒前
bobo发布了新的文献求助10
7秒前
7秒前
老神在在完成签到,获得积分10
8秒前
8秒前
sss完成签到,获得积分20
9秒前
9秒前
10秒前
知性的绮兰完成签到,获得积分10
11秒前
12秒前
seven发布了新的文献求助10
12秒前
东阳完成签到,获得积分10
12秒前
析界成微发布了新的文献求助10
12秒前
12秒前
所所应助aaaaaa采纳,获得10
13秒前
wqw完成签到,获得积分10
14秒前
科目三应助Herzliya采纳,获得80
14秒前
lklk发布了新的文献求助30
14秒前
15秒前
天天快乐应助荧荧荧采纳,获得10
15秒前
15秒前
15秒前
17秒前
啥也不会的生科实验人完成签到,获得积分10
17秒前
shizx发布了新的文献求助10
17秒前
眼睛大寒松完成签到,获得积分10
18秒前
霜序完成签到,获得积分10
20秒前
Dingyiren发布了新的文献求助20
20秒前
ET发布了新的文献求助10
20秒前
21秒前
JKH完成签到,获得积分10
23秒前
Kristin发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187