COVID-19 CT image denoising algorithm based on adaptive threshold and optimized weighted median filter

脉冲噪声 中值滤波器 降噪 人工智能 算法 计算机科学 噪音(视频) 数学 模式识别(心理学) 滤波器(信号处理) 自适应滤波器 计算机视觉 图像(数学) 图像处理 像素
作者
Shuli Guo,Guowei Wang,Lina Han,Xiaowei Song,Wentao Yang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:75: 103552-103552 被引量:33
标识
DOI:10.1016/j.bspc.2022.103552
摘要

CT image of COVID-19 is disturbed by impulse noise during transmission and acquisition. Aiming at the problem that the early lesions of COVID-19 are not obvious and the density is low, which is easy to confuse with noise. A median filtering algorithm based on adaptive two-stage threshold is proposed to improve the accuracy for noise detection. In the advanced stage of ground-glass lesion, the density is uneven and the boundary is unclear. It has similar gray value to the CT images of suspected COVID-19 cases such as adenovirus pneumonia and mycoplasma pneumonia (reticular shadow and strip shadow). Aiming at the problem that the traditional weighted median filter has low contrast and fuzzy boundary, an adaptive weighted median filter image denoising method based on hybrid genetic algorithm is proposed. The weighted denoising parameters can adaptively change according to the detailed information of lung lobes and ground-glass lesions, and it can adaptively match the cross and mutation probability of genetic combined with the steady-state regional population density, so as to obtain a more accurate COVID-19 denoised image with relatively few iterations. The simulation results show that the improved algorithm under different density of impulse noise is significantly better than other algorithms in peak signal-to-noise ratio (PSNR), image enhancement factor (IEF) and mean absolute error (MSE). While protecting the details of lesions, it enhances the ability of image denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默发布了新的文献求助10
1秒前
小小吴完成签到,获得积分10
1秒前
赘婿应助络绎采纳,获得10
4秒前
Eliauk发布了新的文献求助10
6秒前
盐先生完成签到,获得积分10
9秒前
10秒前
wanci应助尊敬寒松采纳,获得10
10秒前
12秒前
12秒前
12秒前
13秒前
饱满的新之完成签到 ,获得积分10
13秒前
壳儿小小发布了新的文献求助10
13秒前
13秒前
fff发布了新的文献求助30
15秒前
JamesPei应助张瑞宁采纳,获得10
15秒前
Bond完成签到 ,获得积分10
15秒前
16秒前
羔羊发布了新的文献求助10
16秒前
共情发布了新的文献求助10
18秒前
Jasper应助明杰采纳,获得10
18秒前
18秒前
Eliauk完成签到,获得积分10
19秒前
书生发布了新的文献求助10
19秒前
Ava应助我的麦子熟了采纳,获得10
20秒前
20秒前
尊敬寒松发布了新的文献求助10
22秒前
22秒前
浮浮沉沉完成签到,获得积分10
23秒前
LL发布了新的文献求助10
24秒前
Theprisoners举报太叔之双求助涉嫌违规
25秒前
哭泣的缘郡完成签到 ,获得积分10
25秒前
28秒前
张瑞宁发布了新的文献求助10
28秒前
dilemma完成签到,获得积分10
28秒前
29秒前
烟雨梦兮发布了新的文献求助10
29秒前
顺心牛排完成签到,获得积分10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609