催化作用
材料科学
法拉第效率
Atom(片上系统)
碳纤维
多孔性
纳米技术
化学工程
金属
限制
物理化学
电化学
化学
电极
有机化学
计算机科学
工程类
嵌入式系统
复合材料
复合数
机械工程
冶金
作者
Ming Huang,Bangwei Deng,Xiaoli Zhao,Zheye Zhang,Fei Li,Kanglu Li,Zhihao Cui,Lingxuan Kong,Jianmei Lu,Fan Dong,Lili Zhang,Peng Chen
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-02-11
卷期号:16 (2): 2110-2119
被引量:90
标识
DOI:10.1021/acsnano.1c07746
摘要
Although various single-atom catalysts have been designed, atomically engineering their coordination environment remains a great challenge. Herein, a one-pot template-sacrificing pyrolysis approach is developed to synthesize well-defined Ni-N4-O catalytic sites on highly porous graphitic carbon for electrocatalytic CO2 reduction to CO with high Faradaic efficiency (maximum of 97.2%) in a wide potential window (-0.56 to -1.06 V vs RHE) and with high stability. In-depth experimental and theoretical studies reveal that the axial Ni-O coordination introduces asymmetry to the catalytic center, leading to lower Gibbs free energy for the rate-limiting step, strengthened binding with *COOH, and a weaker association with *CO. The present results demonstrate the successful atomic-level coordination environment engineering of high-surface-area porous graphitic carbon-supported Ni single-atom catalysts (SACs), and the demonstrated method can be applied to synthesize an array of SACs (metal-N4-O) for various catalysis applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI