流变学
标度律
材料科学
缩放比例
纳米技术
数学
复合材料
几何学
作者
Shuangxi Song,Fan Zhu,Mingwei Chen
出处
期刊:Nature Materials
[Springer Nature]
日期:2022-01-31
卷期号:21 (4): 404-409
被引量:16
标识
DOI:10.1038/s41563-021-01185-y
摘要
The similarity in atomic/molecular structure between liquids and glasses has stimulated a long-standing hypothesis that the nature of glasses may be more fluid-like, rather than the apparent solid. In principle, the nature of glasses can be characterized by the dynamic response of their rheology in a wide rate range, but this has not been realized experimentally, to the best of our knowledge. Here we report the dynamic response of shear stress to the shear strain rate of metallic glasses over a timescale of nine orders of magnitude, equivalent to hundreds of years, by broadband stress relaxation experiments. The dynamic response of the metallic glasses, together with other 'glasses', follows a universal scaling law within the framework of fluid dynamics. The universal scaling law provides comprehensive validation of the conjecture on the jamming (dynamic) phase diagram by which the dynamic behaviours of a wide variety of 'glasses' can be unified under one rubric parameterized by the thermodynamic variables of temperature, volume and stress in the trajectory space.
科研通智能强力驱动
Strongly Powered by AbleSci AI