Transfer Learning and Attention Mechanism for Breast Cancer Classification

过度拟合 计算机科学 人工智能 学习迁移 深度学习 机器学习 模式识别(心理学) 上下文图像分类 特征(语言学) 多数决原则 特征提取 特征学习 投票 人工神经网络 图像(数学) 政治 哲学 语言学 法学 政治学
作者
Chenyang Wang,Feng Xiao,Wenjuan Zhang,Shujuan Huang,Wanyu Zhang,Pinrong Zou
标识
DOI:10.1109/cis54983.2021.00024
摘要

Since the existing deep learning frameworks still cannot meet the high requirements of accuracy and efficiency in practical clinical diagnosis, a breast cancer classification model based on deep transfer learning and visual attention mechanism is proposed. Firstly, in order to overcome the overfitting effect brought by a small number of samples of breast histopathological images, transfer learning is carried out on the basis of two network frameworks, namely VGG16 and ResNet50, and the ImageNet dataset is used as the transfer source domain and the shallow convolutions are frozen. By doing this, training efficiency can be effectively improved since there is no need to train shallow general features repeatedly. Secondly, the attention modules are combined to focus on the feature description of breast lesions. The classification accuracy and efficiency of the model can be effectively improved since they vastly reduce the redundant and interference information. Finally, the soft voting is applied to fuse the class probability outputs from the two individual classifiers to obtain the final classification result. The experimental results of the BreaKHis dataset show that the two-classification accuracy of the proposed network reaches 99.45%, and the eight-classification accuracy reaches 94.11%. Compared with some recent breast image classification algorithms, such as BiCNN, CSDCNN, BHCNet, the proposed method is better in terms of many indicators, such as Accuracy, Precision, Recall, and F1_ score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
他化自在天完成签到,获得积分10
1秒前
2秒前
@@@发布了新的文献求助10
3秒前
云起龙都发布了新的文献求助10
3秒前
tuborong完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
晚夜微雨完成签到,获得积分10
6秒前
7秒前
顺利寄文完成签到,获得积分10
8秒前
imbecile发布了新的文献求助10
8秒前
小二郎应助Joel采纳,获得10
8秒前
等等完成签到,获得积分10
9秒前
酷波er应助迷人的冷亦采纳,获得10
9秒前
汉堡包应助DW采纳,获得10
9秒前
9秒前
科研通AI2S应助wllllll采纳,获得10
10秒前
xjcy应助wllllll采纳,获得10
10秒前
英姑应助wllllll采纳,获得10
10秒前
LEMONS发布了新的文献求助10
11秒前
11秒前
fjm完成签到,获得积分10
11秒前
竹子发布了新的文献求助10
13秒前
LIUYI发布了新的文献求助10
13秒前
zcj完成签到,获得积分10
13秒前
科目三应助lty001采纳,获得10
15秒前
@@@完成签到,获得积分20
15秒前
aldehyde应助漠之梦采纳,获得10
17秒前
溜溜发布了新的文献求助10
18秒前
香精完成签到,获得积分10
18秒前
lty001完成签到,获得积分20
19秒前
20秒前
田様应助LEMONS采纳,获得10
20秒前
临妤完成签到,获得积分10
20秒前
乐乐应助天真的半莲采纳,获得10
22秒前
标致溪流发布了新的文献求助10
23秒前
24秒前
24秒前
星辰大海应助chri采纳,获得10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161454
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897283
捐赠科研通 2471758
什么是DOI,文献DOI怎么找? 1316122
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112