已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking

虚拟筛选 计算机科学 工作流程 化学数据库 对接(动物) 药物发现 生物信息学 数据库 生物 医学 护理部
作者
Francesco Gentile,Jean Charle Yaacoub,James Gleave,Michael Fernández,Anh‐Tien Ton,Fuqiang Ban,Abraham C. Stern,Artem Cherkasov
出处
期刊:Nature Protocols [Springer Nature]
卷期号:17 (3): 672-697 被引量:224
标识
DOI:10.1038/s41596-021-00659-2
摘要

With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a subset of a chemical library, iteratively synchronized with a ligand-based prediction of the remaining docking scores. This method results in hundreds- to thousands-fold virtual hit enrichment (without significant loss of potential drug candidates) and hence enables the screening of billion molecule–sized chemical libraries without using extraordinary computational resources. Herein, we present and discuss the generalized DD protocol that has been proven successful in various computer-aided drug discovery (CADD) campaigns and can be applied in conjunction with any conventional docking program. The protocol encompasses eight consecutive stages: molecular library preparation, receptor preparation, random sampling of a library, ligand preparation, molecular docking, model training, model inference and the residual docking. The standard DD workflow enables iterative application of stages 3–7 with continuous augmentation of the training set, and the number of such iterations can be adjusted by the user. A predefined recall value allows for control of the percentage of top-scoring molecules that are retained by DD and can be adjusted to control the library size reduction. The procedure takes 1–2 weeks (depending on the available resources) and can be completely automated on computing clusters managed by job schedulers. This open-source protocol, at https://github.com/jamesgleave/DD_protocol , can be readily deployed by CADD researchers and can significantly accelerate the effective exploration of ultra-large portions of a chemical space. Screening chemical databases by computational docking is prohibitively time consuming when the databases are very large. Deep docking is a deep-learning approach aimed at reducing the number of compounds that need to be docked.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每天进步6小时完成签到,获得积分20
1秒前
lzy完成签到 ,获得积分10
2秒前
zai发布了新的文献求助10
4秒前
4秒前
上官惮发布了新的文献求助10
4秒前
开心的野狼完成签到 ,获得积分10
5秒前
Sunset完成签到 ,获得积分10
8秒前
2220完成签到 ,获得积分10
10秒前
ZZ发布了新的文献求助10
10秒前
彪壮的青亦完成签到,获得积分10
11秒前
zai完成签到,获得积分20
12秒前
13秒前
14秒前
磨磨唧唧应助呆萌的冥幽采纳,获得30
15秒前
15秒前
我想开兰博完成签到 ,获得积分10
16秒前
烟消云散完成签到,获得积分10
16秒前
Aline完成签到,获得积分10
16秒前
Aline发布了新的文献求助10
19秒前
Orange完成签到 ,获得积分10
19秒前
飞儿随缘发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
希望天下0贩的0应助ZZ采纳,获得10
23秒前
高山七石发布了新的文献求助10
25秒前
张文静发布了新的文献求助10
25秒前
带你去喝雪碧完成签到 ,获得积分10
30秒前
30秒前
方赫然应助高山七石采纳,获得10
31秒前
充电宝应助烤红薯采纳,获得10
32秒前
duxiao完成签到 ,获得积分10
33秒前
33秒前
阔达妙彤完成签到 ,获得积分20
34秒前
35秒前
37秒前
38秒前
39秒前
40秒前
Owen应助SkylynnSun采纳,获得10
41秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234449
求助须知:如何正确求助?哪些是违规求助? 2880760
关于积分的说明 8216976
捐赠科研通 2548347
什么是DOI,文献DOI怎么找? 1377713
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304