An Improved Cluster‐Wise Typhoon Rainfall Forecasting Model Based on Machine Learning and Deep Learning Models Over the Northwestern Pacific Ocean

台风 人工智能 计算机科学 支持向量机 人工神经网络 机器学习 超参数优化 阿达布思 多层感知器 随机森林 Boosting(机器学习) 感知器 深度学习 数据挖掘 气象学 地理
作者
Md. Jalal Uddin,Yubin Li,Abdus Sattar,Mingyang Liu,Nan Yang
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:127 (14) 被引量:1
标识
DOI:10.1029/2022jd036603
摘要

Abstract Though large amounts of work with artificial intelligence are used in typhoon rainfall forecasting, the predictive skills of existing models are unsatisfactory. To address this problem, this study aims to propose an improved cluster‐wise typhoon rainfall forecasting model that integrates the grid‐search cross‐validation method with machine learning and deep learning (DL) models including support vector machine (SVM), random forest (RF), adaptive boosting (AdaBoost), convolutional neural network (CNN), and long short‐term memory (LSTM). Grid‐search cross‐validation is a modified parameterization technique that helps to find the best parameters for machine/DL models. In the first stage, a second‐order polynomial regression model was used to cluster the typhoon track; and in the second stage, cluster‐wise typhoon rainfall was recognized within a 500 km radius from each typhoon center. After that, a modified cluster‐wise typhoon rainfall forecasting model was proposed using cluster‐wise antecedent hourly typhoon rainfall within this distance for 1–6 hr lead time. Results show that the proposed model based on the SVM, RF, AdaBoost, CNN, and LSTM is capable of providing more accurate forecasts (the efficiency of the forecast is increased by 45%–90%) than the existing typhoon rainfall forecasting models that are based on SVM with a genetic algorithm, RF, artificial neural network, multilayer perceptron network, and deep neural network. Therefore, the current study recommends using cluster‐wise typhoon rainfall forecasting model with a grid‐search cross‐validation method for disaster prevention and mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A12138完成签到 ,获得积分10
刚刚
细心香烟完成签到 ,获得积分10
刚刚
1秒前
hongw_liu完成签到,获得积分10
3秒前
这瓜不卖完成签到,获得积分10
3秒前
4秒前
朝霞完成签到,获得积分10
4秒前
研友_n2KQ2Z完成签到,获得积分10
6秒前
kaking完成签到,获得积分20
7秒前
Camellia完成签到 ,获得积分10
7秒前
liuzhigang完成签到 ,获得积分10
7秒前
pp完成签到,获得积分10
8秒前
pear完成签到,获得积分10
10秒前
知性的觅露完成签到,获得积分10
11秒前
忧伤的绍辉完成签到 ,获得积分10
13秒前
瓜农完成签到,获得积分10
13秒前
紫沫完成签到,获得积分10
14秒前
嘻嘻乙烯完成签到,获得积分10
16秒前
镹氿完成签到,获得积分10
17秒前
18秒前
世上僅有的榮光之路完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
Loooong应助雪白的笑槐采纳,获得10
23秒前
YC完成签到,获得积分20
23秒前
安安应助FloppyWow采纳,获得10
25秒前
皛鑫森淼焱垚完成签到,获得积分10
25秒前
lanmin完成签到,获得积分10
26秒前
曾建完成签到 ,获得积分10
26秒前
简单冰巧完成签到 ,获得积分10
26秒前
叶轻寒完成签到,获得积分10
27秒前
思苇完成签到,获得积分10
29秒前
铎铎铎完成签到 ,获得积分10
31秒前
RYAN完成签到 ,获得积分10
32秒前
冷傲的帽子完成签到 ,获得积分10
35秒前
小二郎完成签到 ,获得积分10
36秒前
努力向前看完成签到,获得积分10
37秒前
1111完成签到,获得积分10
38秒前
苗苗完成签到,获得积分10
42秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484566
求助须知:如何正确求助?哪些是违规求助? 3073540
关于积分的说明 9131365
捐赠科研通 2765223
什么是DOI,文献DOI怎么找? 1517786
邀请新用户注册赠送积分活动 702232
科研通“疑难数据库(出版商)”最低求助积分说明 701186