Optimized scheduling of resource-constraints in projects for smart construction

粒子群优化 数学优化 计算机科学 调度(生产过程) 启发式 遗传算法 元启发式 多群优化 群体行为 持续时间(音乐) 数学 文学类 艺术
作者
Jerry Chun‐Wei Lin,Qing Lv,Dehu Yu,Gautam Srivastava,Chun-Hao Chen
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (5): 103005-103005 被引量:7
标识
DOI:10.1016/j.ipm.2022.103005
摘要

In real-life applications, resources in construction projects are always limited. It is of great practical importance to shorten the project duration by using intelligent models (i.e., evolutionary computations such as genetic algorithm (GA) and particle swarm optimization (PSO) to make the construction process reasonable considering the limited resources. However, in the general EC-based model, for example, PSO easily falls into a local optimum when solving the problem of limited resources and the shortest period in scheduling a large network. This paper proposes two PSO-based models, which are resource-constrained adaptive particle swarm optimization (RC-APSO) and an input-adaptive particle swarm optimization (iRC-APSO) to respectively solve the static and dynamic situations of resource-constraint problems. The RC-APSO uses adaptive heuristic particle swarm optimization (AHPSO) to solve the limited resource and shortest duration problem based on the analysis of the constraints of process resources, time limits, and logic. The iRC-APSO method is a combination of AHPSO and network scheduling and is used to solve the proposed dynamic resource minimum duration problem model. From the experimental results, the probability of obtaining the shortest duration of the RC-APSO is higher than that of the genetic PSO and GA models, and the accuracy and stability of the algorithm are significantly improved compared with the other two algorithms, providing a new method for solving the resource-constrained shortest duration problem. In addition, the computational results show that iRC-APSO can obtain the shortest time constraint and the design scheme after each delay, which is more valuable than the static problem for practical project planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凝望那片海2020完成签到,获得积分10
刚刚
CAE上路到上吊完成签到,获得积分10
2秒前
2秒前
shore完成签到,获得积分10
2秒前
2秒前
瘦瘦白薇完成签到 ,获得积分10
2秒前
WHH发布了新的文献求助10
2秒前
笔记本完成签到,获得积分0
2秒前
佳无夜完成签到,获得积分10
3秒前
长情琦发布了新的文献求助10
3秒前
TTYYI完成签到,获得积分10
3秒前
大气的鹭洋完成签到,获得积分10
3秒前
husy完成签到,获得积分10
3秒前
3秒前
小蘑菇应助chen采纳,获得10
3秒前
LordRedScience完成签到,获得积分10
4秒前
弧光完成签到 ,获得积分10
4秒前
4秒前
糖糖完成签到 ,获得积分10
5秒前
快乐的海亦完成签到,获得积分10
7秒前
huang发布了新的文献求助10
7秒前
8秒前
lin完成签到,获得积分10
8秒前
kuangki完成签到,获得积分10
8秒前
顾矜应助大王叫我来巡山采纳,获得10
8秒前
恍若发布了新的文献求助10
8秒前
可靠世平发布了新的文献求助10
9秒前
豆豆完成签到,获得积分10
9秒前
香蕉觅云应助熊熊采纳,获得10
9秒前
唐水之完成签到,获得积分10
9秒前
10秒前
坦率的世开完成签到,获得积分10
10秒前
于鑫发布了新的文献求助10
10秒前
天天快乐应助Yuan采纳,获得30
11秒前
WHH完成签到,获得积分10
11秒前
zxy完成签到,获得积分10
11秒前
11秒前
爆米花应助平淡的寄风采纳,获得10
11秒前
zhongxuejie完成签到,获得积分20
12秒前
神勇契完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904